View More View Less
  • 1 University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
  • 2 MTA-DE Lendület Functional and Restoration Ecology Research Group, H-4032 Debrecen, Egyetem tér 1, Hungary
  • 3 MTA-DE Biodiversity and Ecosystem Services Research Group, H-4032 Debrecen, Egyetem tér 1, Hungary
  • 4 MTA TKI, H-1051 Budapest, Nádor utca 7, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $692.00

Seeds ensure the survival and dispersal of the majority of vascular plant species. Seeds require species-specific germination conditions and display very different germination capacities using different germination methods. Despite the importance of plant generative reproduction, little is known about the germination capacity of the seeds of the Pannonian flora, particularly under field conditions. Our aim was to reduce this knowledge gap by providing original data on the germination capacity of 75 herbaceous species. We reported the germination capacity of 8 species for the first time. We also highlighted the year-to-year differences in the germination capacity of 11 species which could be highly variable between years. The data regarding the germination capacity of target species, as well as weeds and invasive species, can be informative for nature conservation and restoration projects. Our findings support the composition of proper seed mixtures for ecological restoration and also highlight the importance of testing seed germination capacity before sowing.

  • Akinola, M. O., Thompson, K. and Buckland, S. M. (1998): Soil seed bank of an upland calcareous grassland after 6 years of climate and mangement manipulations. – J. Appl. Ecol. 35: 544552. https://doi.org/10.1046/j.1365-2664.1998.3540544.x

    • Search Google Scholar
    • Export Citation
  • Baskin, C. C. and Baskin, J. M. (eds) (1998): Seeds: ecology, biogeography, and evolution of dormancy and germination. – Academic Press, San Diego, 666 pp.

    • Search Google Scholar
    • Export Citation
  • Bossuyt, B. and Honnay, O. (2008): Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. – J. Veg. Sci. 19: 875884. https://doi.org/10.3170/2008-8-18462

    • Search Google Scholar
    • Export Citation
  • Budelsky, R. A. and Galatowitsch, S. M. (1999): Effects of moisture, temperature and time on seed germination of five wetland Carices: implications for restoration. – Restoration Ecol. 7: 8697. https://doi.org/10.1046/j.1526-100x.1999.07110.x

    • Search Google Scholar
    • Export Citation
  • Covell, S., Ellis, R. H., Roberts, E. H. and Summerfield, R. J. (1986): The influence of temperature on seed germination rate in grain legumes: I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. – J. Exp. Bot. 37: 705715. https://doi.org/10.1093/jxb/37.5.705

    • Search Google Scholar
    • Export Citation
  • Csontos, P., Rucinska, A. and Puchalski, J. T. (2010): Germination of Erysimum pieninicum and Erysimum odoratum seeds after various storage conditions. – Tájökol. Lapok 8: 389394.

    • Search Google Scholar
    • Export Citation
  • Deák, B., Valkó, O., Kelemen, A., Török, P., Miglécz, T., Ölvedi, T., Lengyel, S. and Tóthmérész, B. (2011): Litter and graminoid biomass accumulation suppresses weedy forbs in grassland restoration. – Plant Biosystems 145: 730737. https://doi.org/10.1080/11263504.2011.601336

    • Search Google Scholar
    • Export Citation
  • Endrédi, A. (2012): Védett növények ex-situ védelme. – Magiszteri dolgozat, Budapest.

  • Endrédi, A., Molnár, A. and Nagy, J. (2012): A kunsági bükköny (Vicia biennis L.) ex-situ védelme. – Term.véd. Közlem. 18: 150158.

    • Search Google Scholar
    • Export Citation
  • Fekete, R., Mesterházy, A., Valkó, O. and Molnár V., A. (2018): A hitchhiker from the beach – the spread of a maritime halophyte (Cochlearia danica L.) along salted continental roads. – Preslia 90(1): 23-37. https://doi.org/10.23855/preslia.2018.023

    • Search Google Scholar
    • Export Citation
  • Gulzar, S. and Khan, M. A. (2001): Seed germination of a halophytic grass Aeluropus lagopoides. – Ann. Bot. 87: 319324. https://doi.org/10.1006/anbo.2000.1336

    • Search Google Scholar
    • Export Citation
  • Hintze, C., Heydel, F., Hoppe, C., Cunze, S., König, A. and Tackenberg, O. (2013): D³: the dispersal and diaspore database – baseline data and statistics on seed dispersal. – Pers. Plant Ecol., Evol. Syst. 15: 180192. https://doi.org/10.1016/j.ppees.2013.02.001

    • Search Google Scholar
    • Export Citation
  • Huang, Z., Zhang, X., Zheng, G. and Gutterman, Y. (2003): Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. – J. Arid Environm. 55: 453464. https://doi.org/10.1016/s0140-1963(02)00294-x

    • Search Google Scholar
    • Export Citation
  • ISTA (2018): International seed testing association. – https://www.seedtest.org/en/home.html)

  • Kelemen, A., Török, P., Valkó, O., Deák, B., Tóth, K. and Tóthmérész, B. (2015): Both facilitation and limiting similarity shape the species coexistence in dry alkali grasslands. – Ecol. Complexity 21: 3438. https://doi.org/10.1016/j.ecocom.2014.11.004

    • Search Google Scholar
    • Export Citation
  • Kelemen, A., Valkó, O., Kröel-Dulay, Gy., Deák, B., Török, P., Tóth, K., Miglécz, T. and Tóthmérész, B. (2016): The invasion of common milkweed (Asclepias syriaca L.) in sandy old-fields – is it a threat to the native flora? – Appl. Veg. Sci. 19: 218224. https://doi.org/10.1111/avsc.12225

    • Search Google Scholar
    • Export Citation
  • Kimura, H. and Tsuyuzaki, S. (2011): Fire severity affects vegetation and seed bank in a wetland. – Appl. Veg. Sci. 14: 350357. https://doi.org/10.1111/j.1654-109x.2011.01126.x

    • Search Google Scholar
    • Export Citation
  • Király, G. (ed.) (2009): Új Magyar Füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. – Aggtelek National Park Directorate, Jósvafo, 504 pp.

    • Search Google Scholar
    • Export Citation
  • Kleyer, M., Bekker, R., Bakker, J., Knevel, I., Thompson, K., Sonnenschein, M., Poschlod, P., van Groenendael, J., Klimeš, L., Klimešova, J., Klotz, S., Rusch, G., Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Endels, P., Götzenberger, L., Hodgson, J., Jackel, A., Dannemann, A., Kühn, I., Kunzmann, D., Ozinga, W., Römermann, C., Stadler, M., Schlegelmilch, J., Steendam, H., Tackenberg, O., Wilmann, B., Cornelissen, J., Eriksson, O., Garnier, E., Fitter, A. and Peco, B. (2008): The LEDA traitbase: a database of plant life-history traits of North West Europe. – J. Ecol. 96: 12661274. https://doi.org/10.1111/j.1365-2745.2008.01430.x

    • Search Google Scholar
    • Export Citation
  • Kövendi-Jakó, A., Csecserits, A., Halassy, M., Halász, K., Szitár, K. and Török, K. (2016): Relationship of germination and establishment for twelve plant species in restored dry grassland. – Appl. Ecol. Environm. Res. 15: 227239. https://doi.org/10.15666/aeer/1504_227239

    • Search Google Scholar
    • Export Citation
  • Kozlowski, T. T. (ed.) (2012): Germination control, metabolism, and pathology. Vol. 2. – Academic Press Inc., U.S., 447 pp.

  • Lovas-Kiss, Á., Sonkoly, J., Vincze, O., Green, A. J., Takács, A. and Molnár V., A. (2015): Strong potential for endozoochory by waterfowl in a rare, ephemeral wetland plant species, Astragalus contortuplicatus (Fabaceae). – Acta Soc. Bot. Poloniae 84: 321326. https://doi.org/10.5586/asbp.2015.030

    • Search Google Scholar
    • Export Citation
  • Miglécz, T., Tóthmérész, B., Valkó, O., Kelemen, A. and Török, P. (2013): Effects of litter on seedling establishment: an indoor experiment with short-lived Brassicaceae species. – Plant Ecol. 214: 189193. https://doi.org/10.1007/s11258-012-0158-6

    • Search Google Scholar
    • Export Citation
  • Molnár V., A., Sonkoly, J., Lovas-Kiss, Á., Fekete, R., Takács, A., Somlyay, L. and Török, P. (2015): Seed of the threatened annual legume, Astragalus contortuplicatus, can survive over 130 years of dry storage. – Preslia 87: 319328.

    • Search Google Scholar
    • Export Citation
  • Nyárádi-Szabady, J., Dános, B. and Bernáth, J. (1992): Data concerning the germination biology of Salvia species native in Hungary. – Acta Horticulturae 306: 313318. https://doi.org/10.17660/actahortic.1992.306.39

    • Search Google Scholar
    • Export Citation
  • Patanè, C. and Gresta, F. (2006): Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques. – J. Arid Environm. 67: 165173. https://doi.org/10.1016/j.jaridenv.2006.02.001

    • Search Google Scholar
    • Export Citation
  • Peti, E., Schellenberger, J., Németh, G., Málnási Csizmadia, G., Oláh, I., Török, K., Czóbel, S. and Baktay, B. (2017): Presentation of the HUSEEDwild, a seed weight and germination database of the Pannonian flora, through analysing life forms and social behaviour types. – Appl. Ecol. Environm. Res. 15: 225244. https://doi.org/10.15666/aeer/1501_225244

    • Search Google Scholar
    • Export Citation
  • Roberts, E. H. H. (1988): Temperature and seed germination. – Symp. Soc. Exp. Biol. 42: 109132.

  • Royal Botanic Gardens Kew (2018): Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/(January 2018)

  • Sonkoly, J., Valkó, O., Deák, B., Miglécz, T., Tóth, K., Radócz, S., Kelemen, A., Riba, M., Vasas, G., Tóthmérész, B. and Török, P. (2017): A new aspect of grassland vegetation dynamics: cyanobacterium colonies affect establishment success of plants. – J. Veg. Sci. 28: 475483. https://doi.org/10.1111/jvs.12503

    • Search Google Scholar
    • Export Citation
  • Török, P., Deák, B., Vida, E., Valkó, O., Lengyel, S. and Tóthmérész, B. (2010): Restoring grassland biodiversity: sowing low-diversity seed mixtures can lead to rapid favourable changes. – Biol. Conservation 143: 806812. https://doi.org/10.1016/j.biocon.2009.12.024

    • Search Google Scholar
    • Export Citation
  • Török, P., Vida, E., Deák, B., Lengyel, S. and Tóthmérész, B. (2011): Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. – Biodiv. and Conservation 20: 23112332. https://doi.org/10.1007/s10531-011-9992-4

    • Search Google Scholar
    • Export Citation
  • Török, P., Miglécz, T., Valkó, O., Tóth, K., Kelemen, A., Albert, Á., Matus, G., Molnár V., A., Ruprecht, E., Papp, L., Deák, B., Horváth, O., Takács, A., Hüse, B. and Tóthmérész, B. (2013): New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. – Acta Bot. Hung. 55: 429472. https://doi.org/10.1556/abot.55.2013.3-4.17

    • Search Google Scholar
    • Export Citation
  • Török, P., Tóth, E., Tóth, K., Valkó, O., Deák, B., Kelbert, B., Bálint, P., Radócz, Sz., Kelemen, A., Sonkoly, J., Miglécz, T., Matus, G., Takács, A., Molnár V., A., Süveges, K., Papp, L., Papp, L. jr., Tóth, Z., Baktay, B., Málnási Csizmadia, G., Oláh, I., Peti, E., Schellenberger, J., Szalkovszki, O., Kiss, R. and Tóthmérész, B. (2016): New measurements of thousand-seed weights of species in the Pannonian Flora. – Acta Bot. Hung. 58: 187198. https://doi.org/10.1556/034.58.2016.1-2.10

    • Search Google Scholar
    • Export Citation
  • Valkó, O., Tóthmérész, B., Kelemen, A., Simon, E., Miglécz, T., Lukács, B. and Török, P. (2014): Environmental factors driving vegetation and seed bank diversity in alkali grasslands. – Agriculture, Ecosystems and Environment 182: 8087. https://doi.org/10.1016/j.agee.2013.06.012

    • Search Google Scholar
    • Export Citation
  • Valkó, O., Deák, B., Török, P., Kirmer, A., Tishew, S., Kelemen, A., Tóth, K., Miglécz, T., Radócz, S., Sonkoly, J., Tóth, E., Kiss, R., Kapocsi, I. and Tóthmérész, B. (2016): Highdiversity sowing in establishment gaps: a promising new tool for enhancing grassland biodiversity. – Tuexenia 36: 359378. https://doi.org/10.14471/2016.36.020

    • Search Google Scholar
    • Export Citation
  • Valkó, O., Tóth, K., Kelemen, A., Miglécz, T., Sonkoly, J., Tóthmérész, B., Török, P. and Deák, B. (2018): Cultural heritage and biodiversity conservation – plant introduction and practical restoration on ancient burial mounds. – Nature Conservation 24: 6580. https://doi.org/10.3897/natureconservation.24.20019

    • Search Google Scholar
    • Export Citation