View More View Less
  • 1 Faculty of Science, University of Isfahan, Iran
  • | 2 Research Institute of Forest and Rangelands, Tehran, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $692.00

Applying both molecular data and ecological niche modelling is essential to infer the speciation mechanism and species delimitation in organisms. Salvia aristata Auch. ex Benth is an endemic species restricted to western, northwestern and centre of Iran and eastern parts of Turkey with variations in morphological character along its distributions. In this study, we applied SRAP marker and ecological niche modelling using climatic and geographic data to detect and examine the genetic structure and niche differentiation in S. aristata accessions. SRAP marker’s results showed 242 bands highly polymorph. Genetic distance analysis provided two main clusters. The STRUCTURE analysis provided two distinct ecotypes (K = 2). Our ecological niche model produced good results with high performance based on area under curve (AUC > 0.9) for both ecotypes. Altitude was the most important variable contributing in niche model of both ecotypes. The niche space of both ecotypes is different based on niche identity test and background test as well. Based on genetic and ecological evidence, it is concluded that S. aristata gene pool underwent a parapatric speciation process caused by niche divergence and reproductive isolations as a consequence of divergent selection on floral traits.

  • Alvarado-Serrano, D. F. and Knowles, K. (2014): Ecological niche models in phylogeographic studies: applications, advances and precautions. – Mol. Ecol. Res. 14: 233248. https://doi.org/10.1111/1755-0998.12184

    • Search Google Scholar
    • Export Citation
  • Anacker, B. L. and Strauss, S. Y. (2014): The geography and ecology of plant speciation: range overlap and niche divergence in sister species. – Proc. R. Soc. B Biol. Sci. 281(1778): 20132980. https://doi.org/10.1098/rspb.2013.2980

    • Search Google Scholar
    • Export Citation
  • Baldwin, R. A. (2009): Use of maximum entropy modeling in wildlife research. – Entropy 11(4): 854866. https://doi.org/10.3390/e11040854

    • Search Google Scholar
    • Export Citation
  • Behçet, L. and Avlamaz, D. (2009): A new record for Turkey: Salvia aristata Aucher ex Benth. (Lamiaceae). – Turk. J. Bot. 33(1): 6163. https://doi.org/10.3906/bot-0808-14

    • Search Google Scholar
    • Export Citation
  • Bentham, G. (1848): Labiatae. – In: de Candolle, A. (ed.): Prodromus. Vol. 12. 1st ed. Paris, France: Treuttel and Würtz, pp. 262358.

    • Search Google Scholar
    • Export Citation
  • Bivand, R., Keitt, T. and Rowlingson, B. (2014): Rgdal: bindings for the geospatial data abstraction library. R Package Version 0.9-1. – http://CRAN.R-project.org/package=rgdal.

    • Search Google Scholar
    • Export Citation
  • Busby, J. R. (1991): A bioclimatic analysis and prediction system. – In: Margules, C. R. and Austin, M. P. (eds): Nature conservation: cost effective biological surveys and data analysis. CSIRO, Sydney, New South Wales, pp. 6468.

    • Search Google Scholar
    • Export Citation
  • Butlin, R. K., Galindo, J., Grahame, J. W. and Sheffield, S. (2008): Sympatric, parapatric or allopatric: the most important way to classify speciation? – Trans. R. Soc. Land. B. 363: 29973007. https://doi.org/10.1098/rstb.2008.0076

    • Search Google Scholar
    • Export Citation
  • Chang, D., Yang, F. Y., Yan, J. J., Wu, Y. Q., Bai, S. Q., Liang, X. Z. and Gan, Y. M. (2012): SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum, from Sichuan, China. – Genet. Mol. Res. 11(2): 12451253. https://doi.org/10.4238/2012.May.9.3\rgmr1521 [pii]

    • Search Google Scholar
    • Export Citation
  • Claßen-Bockhoff, R., Speck, T., Tweraser, E., Wester, P., Thimm, S. and Reith, M. (2004): The staminal lever mechanism in Salvia L. (Lamiaceae): a key innovation for adaptive radiation? – Org. Divers. Evol. 4(3): 189205. https://doi.org/10.1016/j.ode.2004.01.004

    • Search Google Scholar
    • Export Citation
  • Coyne, J. A. and Orr, H. A. (1998): The evolutionary genetics of speciation. – Phil. Trans. R. Soc. Land. B. 353: 287305.

  • De Queiroz, K. (2007): Species concepts and species delimitation. – Syst. Biol. 56(6): 879886. https://doi.org/10.1080/10635150701701083

    • Search Google Scholar
    • Export Citation
  • DeSalle, R., Egan, M. G. and Siddall, M. (2005): The unholy trinity: taxonomy, species delimitation and DNA barcoding. – Philos. Trans. R. Soc. B Biol. Sci. 360(1462): 19051916. https://doi.org/10.1098/rstb.2005.1722

    • Search Google Scholar
    • Export Citation
  • Doyle, J. J. and Doyle, J. L. (1987): A rapid isolation procedure for small quantities of fresh leaf tissue. – Phytochem. Bull. 19: 1115.

    • Search Google Scholar
    • Export Citation
  • Earl, D. A. and vonHoldt, B. M. (2012): STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. – Conserv. Genet. Resour. 4(2): 359361. https://doi.org/10.1007/s12686-011-9548-7

    • Search Google Scholar
    • Export Citation
  • Elias, M., Faria, R., Gompert, Z., & Hendry, A. (2012): Factors influencing progress toward ecological speciation. – Int. J. Evol. Biol. 2012(i): 17. https://doi.org/10.1155/2012/235010

    • Search Google Scholar
    • Export Citation
  • Erbano, M., Schnell e Schühli, G. and Pereira dos Santos, É. (2015): Genetic variability and population structure of Salvia lachnostachys: implications for breeding and conservation programs. – Int. J. Mol. Sci. 16(4): 78397850. https://doi.org/10.3390 /ijms16047839

    • Search Google Scholar
    • Export Citation
  • Feder, J. L., Egan, S. P. and Nosil, P. (2012): The genomics of speciation-with-gene-flow. – Trends Genet. 28(7): 342350. https://doi.org/10.1016/j.tig.2012.03.009

    • Search Google Scholar
    • Export Citation
  • Fick, S. E. and Hijmans, R. J. (2017): Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. – Int. J. Climatol. 37(12): 43024315. https://doi.org/10 .1002/joc.5086

    • Search Google Scholar
    • Export Citation
  • Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. and Moritz, C. (2012): Coalescent- based species delimitation in an integrative taxonomy. – Trends Ecol. Evol. 27(9): 480488. https://doi.org/10.1016/j.tree.2012.04.012

    • Search Google Scholar
    • Export Citation
  • Guisan, A. and Thuiller, W. (2005): Predicting species distribution: offering more than simple habitat models. – Ecol. Lett. 8: 9931009. https://doi.org/10.1111/j.1461-0248.2005 .00792.x

    • Search Google Scholar
    • Export Citation
  • Hedge, I. C. (1982): Salvia L., –In Rechinger, K. H. (ed.): Red data book of Iran. Flora Iranica 150.

  • Hijmans, R. J. and Van Etten, J. (2012): Geographic analysis and modeling with raster data. – http://raster.r-forge.r-project.org/

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005): Very high resolution interpolated climate surfaces for global land areas. – Int. J. Climatol. 25(15): 19651978. https://doi.org/10.1002/joc.1276

    • Search Google Scholar
    • Export Citation
  • Jakobsson, M. and Rosenberg, N. A. (2007): CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. – Bioinformatics 23(14): 18011806. https://doi.org/10.1093 /bioinformatics/btm233

    • Search Google Scholar
    • Export Citation
  • Jamzad, Z. (2012): Lamiaceae. – In: Assadi, M., Maassoumi, A. and Mozaffarian, V. (eds): Flora of Iran. Vol. 76. Research Institute of Forests and Rangelands, Tehran, 810 pp.

    • Search Google Scholar
    • Export Citation
  • Khimoun, A., Cornuault, J., Burrus, M., Pujol, B., Thebaud, C. and Andalo, C. (2013): Ecology predicts parapatric distributions in two closely related Antirrhinum majus subspecies. – Evol. Ecol. 27(1): 5164. https://doi.org/10.1007/s10682-012-9574-2

    • Search Google Scholar
    • Export Citation
  • Knowles, L. L., Carstens, B. C. and Keat, M. L. (2007): Report coupling genetic and ecological- niche models to examine how past population distributions contribute to divergence. – Curr. Biol. 17: 940946. https://doi.org/10.1016/j.cub.2007.04.033

    • Search Google Scholar
    • Export Citation
  • Kozak, K. H., Graham, C. H. and Wiens, J. J. (2008): Integrating GIS-based environmental data into evolutionary biology. – Trends Ecol. Evol. 23(3): 141148. https://doi.org/10 .1016/j.tree.2008.02.001

    • Search Google Scholar
    • Export Citation
  • Levin, D. A. (2000): The origin, expansion, and demise of plant species. – Oxford University Press, Oxford, pp. 659.

  • Li, G. and Quiros, C. F. (2001): Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. – Trends Ecol. Evol. 103(2–3): 455461. https://doi.org/10.1007 /s001220100570

    • Search Google Scholar
    • Export Citation
  • Li, P., Zhan, X., Que, Q., Qu, W., Liu, M., Ouyang, K. and Chen, X. (2015): Genetic diversity and population structure of Toona ciliata Roem. based on sequence-related amplified polymorphism (SRAP) markers. – Forests 6(4): 10941106. https://doi.org/10.3390 /f6041094

    • Search Google Scholar
    • Export Citation
  • Liu, Z. J. and Cordes, J. F. (2004): Erratum to “DNA marker technologies and their applications in aquaculture genetics” [Aquaculture 238 (2004) 1–37]. – Aquaculture 242(1–4): 735736. https://doi.org/10.1016/j.aquaculture.2004.08.022

    • Search Google Scholar
    • Export Citation
  • Lowe, A., Harris, S. and Ashton, P. (2004): Ecological genetics design, analysis, and application. – Blackwell Publishing, UK, 196 pp.

    • Search Google Scholar
    • Export Citation
  • Marchant, D. B., Soltis, D. E. and Soltis, P. S. (2016): Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. – New Phytol. 212: 708718. https://doi.org /10.1111/nph.14069

    • Search Google Scholar
    • Export Citation
  • Nguyen, H. T. and Wu, X. (2005): Molecular marker systems for genetic mapping. – In: Meksemand, K. and Kahl, G. (eds): The handbook of plant genome mapping. Wiley-Blackwell, pp. 2350.

    • Search Google Scholar
    • Export Citation
  • Nosil, P. and Sandoval, C. P. (2008): Ecological niche dimensionality and the evolutionary diversification of stick insects. – Plos One 3(4): 111. https://doi.org/10.1371/journal .pone.0001907

    • Search Google Scholar
    • Export Citation
  • Nosil, P., Harmon, L. J., & Seehausen, O. (2009): Ecological explanations for (incomplete) speciation. – Trends Ecol. Evol. 24(3): 145156. https://doi.org/10.1016/j.tree.2008.10.011

    • Search Google Scholar
    • Export Citation
  • Pellissier, L., Pottier, J., Vittoz, P., Dubuis, A. and Guisan, A. (2010): Spatial pattern of floral morphology: possible insight into the effects of pollinators on plant distributions. – Oikos 119(11): 18051813. https://doi.org/10.1111/j.1600-0706.2010.18560.x

    • Search Google Scholar
    • Export Citation
  • Pelletier, T. A. R., A., A. P., Risafulli, C. H. C., Agner, S. T. W., Ellmer, A. M. J. Z. and Arstens, B. R. C. C. (2015): Historical species distribution models predict species limits in western Plethodon salamanders. – Syst. Biol. 64(6): 909925. https://doi.org/10.1093 /sysbio/syu090

    • Search Google Scholar
    • Export Citation
  • Penner, G. A., Bush, A., Wise, R., Kim, W., Domier, L., Kasha, K. and Fedak, G. (1993): Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. – PCR Methods Appl. 2(4): 341345. https://doi.org/10.1101/gr.2.4.341

    • Search Google Scholar
    • Export Citation
  • Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006): Maximum entropy modeling of species geographic distributions. – Ecol. Modell. 190: 231259. https://doi.org/10.1016 /j.ecolmodel.2005.03.026

    • Search Google Scholar
    • Export Citation
  • Pritchard, J. K., Stephens, M. and Donnelly, P. (2000): Inference of population structure using multilocus genotype data. – Genetics 155(2): 945959. https://doi.org/10.1111 /j.1471-8286.2007.01758.x QGIS Development Team (2015): QGIS Geographic Information System. Open Source Geospatial Foundation Project. – Available online at: http://www.qgis.org/.

    • Search Google Scholar
    • Export Citation
  • R Core Team (2015). R: a language and environment for statistical computing. – R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • Raxworthy, C., Ingram, C., Rabibisoa, N. and Pearson, R. (2007): Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. – Syst. Biol. 56(6): 907923. https://doi.org /10.1080/10635150701775111

    • Search Google Scholar
    • Export Citation
  • Reeves, P. A. and Richards, C. M. (2011): Species delimitation under the general lineage concept: an empirical example using wild North American hops (Cannabaceae: Humulus lupulus). – Syst. Biol. 60(1): 4559. https://doi.org/10.1093/sysbio/syq056

    • Search Google Scholar
    • Export Citation
  • Richardson, J. L. and Urban, M. C. (2013): Strong selection barriers explain microgeographic adaptation in wild salamander populations. – Evolution. 67(6): 17291740. https:// doi.org/10.1111/evo.12052

    • Search Google Scholar
    • Export Citation
  • Rissler, L. and Apodaca, J. (2007): Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). – Syst. Biol. 56(6): 924942. https://doi.org/10.1080 /10635150701703063

    • Search Google Scholar
    • Export Citation
  • Rivera, P. C., Di Cola, V., Martínez, J. J., Gardenal, C. N. and Chiaraviglio, M. (2011): Species delimitation in the continental forms of the genus Epicrates (Serpentes, Boidae) integrating phylogenetics and environmental niche models. – PLoS One. 6(9): https:// doi.org/10.1371/journal.pone.0022199

    • Search Google Scholar
    • Export Citation
  • Robarts, D. W. H. and Wolfe, A. D. (2014): Sequence-related amplified polymorphism (SRAP) markers: a potential resource for studies in plant molecular biology (1). – Appl. Plant Sci. 2(7): 113. https://doi.org/10.3732/apps.1400017

    • Search Google Scholar
    • Export Citation
  • Rosenberg, N. A. (2004): DISTRUCT: a program for the graphical display of population structure. – Mol. Ecol. Notes 4(1): 137138. https://doi.org/10.1046/j.1471-8286.2003 .00566.x

    • Search Google Scholar
    • Export Citation
  • Rundle, H. D. and Nosil, P. (2005): Ecological speciation. – Ecol. Lett. 8(3): 336352. https:// doi.org/10.1111/j.1461-0248.2004.00715.x

    • Search Google Scholar
    • Export Citation
  • Schoener, T. W. and Schoener, T. W. (2015): The Anolis lizards of Bimini: resource partitioning in a complex fauna. – Ecology 49(4): 704726. https://doi.org/10.2307/1935534

    • Search Google Scholar
    • Export Citation
  • Stockwell, D. (1999): The GARP modelling system: problems and solutions to automated spatial prediction. – Int. J. Geogr. Inf. Sci. 13(2): 143158. https://doi.org/10.1080 /136588199241391

    • Search Google Scholar
    • Export Citation
  • Talebi, M., Rahimmalek, M. and Norouzi, M. (2015): Genetic diversity of Thymus daenensis subsp. daenensis using SRAP markers. – Biologia (Bratislava) 70(4): 453459. https://doi.org/10.1515/biolog-2015-0059

    • Search Google Scholar
    • Export Citation
  • Tali, M., Abdoli, E., & Nezammahalleh, M. (2013): Geomorphological and sedimentological evidence of alpine glaciers in the Zagros Mountains, Dinevar, Iran. – J. Tethys 1(1), 8595.

    • Search Google Scholar
    • Export Citation
  • Thuiller, W., Lafourcade, B., Engler, R. and Araujó, M. B. (2009): BIOMOD –a platform for ensemble forecasting of species distributions. – Ecography 32(3): 369373. https://doi .org/10.1111/j.1600-0587.2008.05742.x

    • Search Google Scholar
    • Export Citation
  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M. and Zabeau, M. (1995): AFLP: a new technique for DNA fingerprinting. – Nucleic Acids Res. 23(21): 44074414. https://doi.org/10.1093/nar/23 .21.4407

    • Search Google Scholar
    • Export Citation
  • Vroh, B. T. A., Yao, C. Y. A., Kpangui, K. B., Gone Bi, Z. B., Kouame, D., Koffi, K. J., and, N., Guessan, K. E. (2016): Comparing suitable habitat models to predict rare and en demic plant species distributions: what are the limits of the niche of Cola lorougnonis (Malvaceae) in Cote d’Ivoire? – Env. Nat. Resour. Res. 6(3): 117. https://doi.org/10 .5539/enrr.v6n3p1

    • Search Google Scholar
    • Export Citation
  • Walker, J. B., Sytsma, K. J., Treutlein, J. and Wink, M. (2004): Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. – Amer. J. Bot. 91(7): 11151125. https://doi.org/10 .3732/ajb.91.7.1115

    • Search Google Scholar
    • Export Citation
  • Warren, D. L., Glor, R. E. and Turelli, M. (2010): ENMTools: a toolbox for comparative studies of environmental niche models. – Ecography (Cop.). 33(3): 607611. https://doi.org /10.1111/j.1600-0587.2009.06142.x

    • Search Google Scholar
    • Export Citation
  • Warren, D. L., Glor, R. E. and Turelli, M. (2008): Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. – Evolution 62(11): 28682883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Chen, C., Li, L., Zhao, C., Chen, W. and Huang, Y. (2014): Insights from ecological niche modeling on the taxonomic distinction and niche differentiation between the blackspotted and red-spotted Tokay geckoes (Gekko gecko). – Ecol. Evol. 4(17): 33833394. https://doi.org/10.1002/ece3.1183

    • Search Google Scholar
    • Export Citation
  • Zheng, H., Fan, L., Milne, R. I., Zhang, L., Wang, Y., & Mao, K. (2017): Species delimitation and lineage separation history of a species complex of aspens in China. – Frontiers in Plant Science 8: 117. https://doi.org/10.3389/fpls.2017.00375

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

 

Senior editors

Managing Editors

Editorial Board

  • Gy. BORBÉLY (Debrecen)
  • A. ČARNY (Ljubljana)
  • A. CSERGŐ (Dublin)
  • B. CZÚCZ (Paris)
  • M. HÖHN (Budapest)
  • K. T. KISS (Budapest)
  • A. KUZEMKO (Uman)
  • Z. LOSOSOVÁ (Brno)
  • I. MÁTHÉ (Szeged)
  • E. MIHALIK (Szeged)
  • S. ORBÁN (Eger)
  • R. PÁL (Butte)
  • Gy. PINKE (Mosonmagyaróvár)
  • T. PÓCS (Eger)
  • K. PRACH (České Budejovice)
  • E. S. RAUSCHERT (Cleveland)
  • E. RUPRECHT (Cluj Napoca)
  • G. SRAMKÓ (Debrecen)
  • A. T. SZABÓ (Veszprém)
  • É. SZŐKE (Budapest)
  • B. TOKARSKA-GUZIK (Katowice)
  • B. TÓTHMÉRÉSZ (Debrecen)
  • P. TÖRÖK (Debrecen)

Botta-Dukát, Zoltán
E-mail: botta-dukat.zoltan@okologia.mta.hu

or

Lőkös, László
E-mail: acta@bot.nhmus.hu
Institute: Botanical Department, Hungarian Natural History Museum
Address: Könyves K. krt. 40. H-1097 Budapest, Hungary

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Referativnyi Zhurnal

 

2020  
Scimago
H-index
19
Scimago
Journal Rank
0,417
Scimago
Quartile Score
Plant Science Q2
Ecology, Evolution, Behavior and Systematics Q3
Scopus
Cite Score
155/89=1,7
Scopus
Cite Score Rank
Plant Science 221/445 (Q2)
Ecology, Evolution, Behavior and Systematics 374/647 (Q3)
Scopus
SNIP
0,838
Scopus
Cites
260
Scopus
Documents
22
Days from submission to acceptance 127
Days from acceptance to publication 132
Acceptance
Rate
36%

 

2019  
Scimago
H-index
17
Scimago
Journal Rank
0,404
Scimago
Quartile Score
Plant Science Q2
Ecology, Evolution, Behavior and Systematics Q3
Scopus
Cite Score
164/91=1,8
Scopus
Cite Score Rank
Plant Science 209/431 (Q2)
Ecology, Evolution, Behavior and Systematics 358/629 (Q3)
Scopus
SNIP
0,699
Scopus
Cites
215
Scopus
Documents
23
Acceptance
Rate
30%

 

Acta Botanica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 580 EUR / 724 USD
Print + online subscription: 660 EUR / 824 USD
Subscription fee 2022 Online subsscription: 594 EUR / 740 USD
Print + online subscription: 676 EUR / 844 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Botanica Hungarica
Language English
French
German
Russian
Spanish
Size B5
Year of
Foundation
1954
Publication
Programme
2021 Volume 63
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6495 (Print)
ISSN 1588-2578 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 11 0 0
Jun 2021 11 1 1
Jul 2021 6 0 0
Aug 2021 8 0 0
Sep 2021 10 2 1
Oct 2021 5 0 0
Nov 2021 0 0 0