View More View Less
  • 1 Sultan Moulay Slimane University, P. B. 523, Beni Mellal, Morocco
  • | 2 Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, España
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $692.00

The genetic diversity of 12 Atriplex halimus L. populations collected throughout its natural range in Morocco has been studied by using sequences of nrDNA ITS region. Within-population genetic diversity was high in comparison to others species with similar life histories and ecological traits. Most of genetic variation detected by AMOVA resided within populations (94%), relative to the amount of variation among populations (6%). The level of populations differentiation (FST = 0.06) was low, which corresponds with the high level of gene flow (4.00) revealed between populations. Differentiation among ecological groups of populations accounted only for 1.23% of the total ITS variation, which indicates that climatic conditions did not have an effect of population's structuration or that this differentiation is obviously not related to ITS markers. Furthermore, very low genetic differentiation (FCT = 0.015) was observed between regions (Moroccan populations versus American population). Strangely enough, geographic distances were not correlated to genetic differentiation between the populations (r = 0.06, P = 0.5). The structuration of populations in five groups was not operated according to their bioclimatic type. The data obtained in this assay could play a crucial role to establish efficient strategies for genetic resources conservation and to work out the scheme of breeding programs of Atriplex.

  • Abbad, A., Cherkaoui, M., Wahid, N., El Hadrami, A. and Benchaabane, A. (2004): Variabilité phénotypique et génétique de trois populations naturelles d'Atriplex halimus. – Compt. Rend. Biol. 327: 371380. https://doi.org/10.1016/j.crvi.2004.01.005

    • Search Google Scholar
    • Export Citation
  • Berge, G., Nordal, I. and Hestmark, G. (1998): The effect of breeding systems and pollination vectors on the genetic variation of small plant populations within an agricultural landscape. – Oikos 81: 1729. https://doi.org/10.2307/3546463

    • Search Google Scholar
    • Export Citation
  • Boose, D., Harrison, S., Clement, S. and Meyer, S. E. (2011): Population genetic structure of the seed pathogen Pyrenophora semeniperda on Bromus tectorum in western North America. – Mycologia 103(1): 8593. https://doi.org/10.3852/09-310

    • Search Google Scholar
    • Export Citation
  • Bouda, S., Del Campo, F. F., Haddioui, A., Baaziz, M. and Hernàndez, L. E. (2008): RAPD and ITS-based variability revealed in Atriplex species introduced to semi-arid zones of Morocco. – Sci. Hortic. 118: 172179. https://doi.org/10.1016/j.scienta.2008.05.033

    • Search Google Scholar
    • Export Citation
  • Bouda, S., Hernandez, L. E., Del Campo, F. F., Baaziz, M. and Haddioui, A. (2013): Variability of natural populations of Atriplex halimus L. in Morocco as investigated by RAPD markers. – Roman. Biotechn. Lett. 18: 83618371. https://pdfs.semanticscholar.org/2245/0ef79a88d8deadd7dbaef53b90edad251ab6.pdf

    • Search Google Scholar
    • Export Citation
  • Boulanouar, B., Chriyaa, A. and Boutouba, A. (1996): Moroccan experience with fodder shrub research and development. – In: Gustave, G., Bounejmate, M. and Nefzaoui, A. (eds): Fodder shrub development in arid and semi-arid zones. Proc of Regional Workshop on Native and Exotic fodder Shrubs in Arid and Semi-Arid Zones, 27 Oct-2 Nov 1996, Hammamet, Tunisia, pp 135152.

    • Search Google Scholar
    • Export Citation
  • Bruschi, P., Vedramin, G. G., Bussotti, F. and Grossoni, P. (2003): Morphological and molecular diversity among Italian populations of Quercus petraea (Fagaceae). – Ann. Bot. 91: 707716. https://doi.org/10.1093/aob/mcg075

    • Search Google Scholar
    • Export Citation
  • Duminil, J., Fineschi, S., Hampe, A., Jordano, P., Salvini, D., Vendramin, G. G.and Petit, R. J. (2007): Can population genetic structure be predicted from life-history traits? – Amer. Naturalist 169: 662672. https://doi.org/10.1086/513490

    • Search Google Scholar
    • Export Citation
  • El-Bakatoushi, R., Alframawy, A. M., Tammam, A., Youssef, D. and El-Sadek, L. (2015): Molecular and physiological mechanisms of heavy metal tolerance in Atriplex halimus. Int. J. Phytoremed. 17: 789800. https://doi.org/10.1080/15226514.2014.964844

    • Search Google Scholar
    • Export Citation
  • El Ferchichi, H. O., Hcini, K. and Bouzid, S. (2006): Chromosome numbers in Tunisian populations of Atriplex halimus L. (Chenopodiaceae). – Afr. J. Biotechn. 5(12): 11901193. https://doi.org/10.5897/AJB06.039

    • Search Google Scholar
    • Export Citation
  • Elframawy, A., Deif, H. and El-Bakatoushi, R. (2016): Genetic variation among fragmented populations of Atriplex halimus L. using start codon targeted (SCoT) and ITS1-58S-ITS2 region markers. – Amer. J. Mol. Biol. 6: 101115. https://doi.org/10.4236/ajmb.2016.62011

    • Search Google Scholar
    • Export Citation
  • Excoffier, L., Laval, G. and Schneider, S. (2005): Arlequin ver 30: an integrated software for population genetics data analysis. – Evol. Bioinform. 1: 4750. https://doi.org/10.1177/117693430500100003

    • Search Google Scholar
    • Export Citation
  • Excoffier, L., Smouse, P. E.and Quattro, J. M. (1992): Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. – Genetics 131: 479491. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1205020/pdf/ge1312479.pdf

    • Search Google Scholar
    • Export Citation
  • Fischer, M. and Matthies, D. (1998): RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). – Amer. J. Bot. 85(6): 811819. https://doi.org/10.2307/2446416

    • Search Google Scholar
    • Export Citation
  • Foster, S. A., Scott, R. J.and Cresko, W. A. (1998): Nested biological variation and speciation. – Phil. Trans. Roy. Soc. Lond., Biol. Sci. 353: 207218. https://doi.org/10.1098/rstb.1998.0203

    • Search Google Scholar
    • Export Citation
  • Flavell, R. B., O'Dell, M., Sharp, P., Nevo, E. and Beiles, A. (1986): Variation in the intergenic spacer of ribosomal DNA of wild wheat, Triticum dicoccoides, in Israel. – Mol. Biol. Evol. 3: 547558. https://doi.org/10.1093/oxfordjournals.molbev.a040418

    • Search Google Scholar
    • Export Citation
  • Gianoli, E., Inostroza, P., Zúñiga-Feest, A., Reyes-Díaz, M., Cavieres, L. A., Bravo, L. A. and Corcuera, L. J. (2004): Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of Central Chile and the Maritime Antarctic. – Arctic, Antarctic, Alpine Res. 36(4): 484489. https://doi.org/10.1657/1523-0430(2004)036[0484:edimac]2.0.co;2

    • Search Google Scholar
    • Export Citation
  • Godt, M. J. W. and Hamrick, J. L. (1993): Genetic diversity and population structure in Tradescantia hirsuticaulis (Commelinaceae). – Amer. J. Bot. 80: 959966. https://doi.org/10.1002/j.1537-2197.1993.tb15318.x

    • Search Google Scholar
    • Export Citation
  • Gunter, L. E., Tuskan, G. A. and Wallschleger, S. D. (1996): Diversity of populations of switchgrass based on RAPD markers. – Crop Sci. 36: 10171022. https://doi.org/10.2135/cropsci1996.0011183x003600040034x

    • Search Google Scholar
    • Export Citation
  • Haddioui, A. and Baaziz, M. (2001): Genetic diversity of natural populations of Atriplex halimus L. in Morocco: an isoenzyme-based overview. – Euphytica 121: 99105. https://doi.org/10.1023/A:1012051222530

    • Search Google Scholar
    • Export Citation
  • Haddioui, A., Ould Mohamed Lemine, M. M., Zinelabidine, L. H., El Hansali, M. and Bouda, S. (2008): Variabilité phénotypique de la phénologie végétative et de la biomasse d'une espèce d'intérêt écologique et économique au Maroc: Atriplex halimus L. – Ecol. mediter. 34: 65272. https://ecologia-mediterranea.univ-avignon.fr/wp-content/uploads/sites/25/2017/07/Ecologia_mediterranea_2008-34_02.pdf

    • Search Google Scholar
    • Export Citation
  • Hamrick, J. L.and Allard, R. W. (1972): Microgeographical variation in allozyme frequencies in Avena barbata. – Proc. Natl. Acad. Sci. USA 69: 21002104. https://doi.org/10.1073/pnas.69.8.2100

    • Search Google Scholar
    • Export Citation
  • Hamrick, J. L.and Godt, M. J. W. (1990): Allozyme diversity in plant species. – In: Brown, A. H. D., Clegg, M. T., Kahler, A. L.and Weir, B. S. (eds): Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, MA, pp. 4363.

    • Search Google Scholar
    • Export Citation
  • Hamrick, J. L., Godt, M. J. W. and Sherman-Broyles, S. L. (1992): Factors influencing levels of genetic diversity in woody plant species. – New Forests 6: 95124. https://doi.org/10.1007/bf00120641

    • Search Google Scholar
    • Export Citation
  • Hcini, K., Walker, D. J., Bouzid, S., Gonzalez, E., Frayssinet, N. and Correal, E. (2006): Determination of ploidy level and nuclear DNA content in Tunisian populations of Atriplex halimus L. – Genet. Resour. Crop Evol. 53: 15. https://doi.org/10.1007/s10722-005-5806-4

    • Search Google Scholar
    • Export Citation
  • Hcini, K., Ben Farhat, H., Harzallah, M. and Bouzid, S. (2007): Diversity in natural populations of Atriplex halimus L in Tunisia. – Plant Genet. Resour. Newslett. 149: 3438. https://www.bioversityinternational.org/fileadmin/PGR/article-issue_149-art_8-lang_en.html

    • Search Google Scholar
    • Export Citation
  • Hcini, K., Cenis, J. L., Enrique, C. and Bouzid, S. (2010): Genetic variation of the species Atriplex halimus L. (Chenopodiaceae) using the ITS1-58S-ITS2 region of the ribosomal DNA. – Amer.-Euras. J. Agric. Environ. Sci. 8: 550555. https://www.idosi.org/aejaes/jaes8(5)/12.pdf

    • Search Google Scholar
    • Export Citation
  • Huang, D. Q., Li, Q. Q., Zhou, C. J., Zhou, S. D. and He, X. J. (2014): Intraspecific differentiation of Allium wallichii (Amaryllidaceae) inferred from chloroplast DNA and internal transcribed spacer fragments. – J. Syst. Evol. 52(3): 341354. https://doi.org/10.1111/jse.12050

    • Search Google Scholar
    • Export Citation
  • Huang, W. D., Zhao, X. Y., Li, Y. Q., Zuo, X. A., Feng, J. and Su, N. (2013): ITS sequence analysis of Artemisia halodendron in different habitat gradients. – Sci. Cold Arid Reg. 5(3): 347352. https://doi.org/10.3724/sp.j.1226.2013.00347

    • Search Google Scholar
    • Export Citation
  • Isabel, N., Beaulieu, J., Thériault, P. and Bousquet, J. (1999): Direct evidence for biased gene diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints. – Mol. Ecol. 8: 477483. https://doi.org/10.1046/j.1365-294x.1999.00597.x

    • Search Google Scholar
    • Export Citation
  • Jordano, P. and Godoy, J. A. (2000): RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. – Mol. Ecol. 9: 12931305. https://doi.org/10.1046/j.1365-294x.2000.01009.x

    • Search Google Scholar
    • Export Citation
  • Jorgensen, J. L., Stehlik, I., Brochmann, C. and Conti, E. (2003): Implication of ITS sequences and RAPD markers for the taxonomy and biogeography of the Oxytropis campestris and O. arctica (Fabaceae) complex in Alaska. – Amer. J. Bot. 90(10): 14701480. https://doi.org/10.3732/ajb.90.10.1470

    • Search Google Scholar
    • Export Citation
  • Kimura, M. (1980): A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. – J. Mol. Evol. 16: 110120. https://doi.org/10.1007/bf01731581

    • Search Google Scholar
    • Export Citation
  • Kölliker, R., Stadelmann, F. J., Reidy, B. and Nösberger, J. (1998): Fertilization and defoliation frequency affect genetic diversity of Festuca pratensis Huds. in permanent grasslands. – Mol. Ecol. 7: 15571567. https://doi.org/10.1046/j.1365-294x.1998.00486.x

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Tamura, K. and Nei, M. (2004): MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. – Brief. Bioinform. 5: 150163. https://doi.org/10.1093/bib/5.2.150

    • Search Google Scholar
    • Export Citation
  • Le Houérou, H. N. (1992): The role of saltbushes (Atriplex spp.) in arid land rehabilitation in the Mediterranean Basin: a review. – Agroforest. Syst. 18: 107148. https://doi.org/10.1007/bf00115408

    • Search Google Scholar
    • Export Citation
  • Le Houérou, H. N. (2000): Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. – Arid Soil Res. Rehab. 14: 101135. https://doi.org/10.1080/089030600263058

    • Search Google Scholar
    • Export Citation
  • Levin, D. A. (1984): Immigration in plants: an exercise in the subjunctive. – In: Dirzo, R. and Sarukhan, J. (eds): Perspectives on plant population biology. Sinauer, Sunderland, Massachusetts, USA, pp. 242260.

    • Search Google Scholar
    • Export Citation
  • Lindblom, L. and Ekman, S. (2006): Genetic variation and population differentiation in the lichen-forming ascomycete Xanthoria parietina on the island Storfosna, central Norway. – Mol. Ecol. 15: 15451559. https://doi.org/10.1111/j.1365-294x.2006.02880.x

    • Search Google Scholar
    • Export Citation
  • Loveless, M. D.and Hamrick, J. L. (1984): Ecological determinants of genetic structure in populations. – Annu. Rev. Ecol. Syst. 15: 6595. https://doi.org/10.1146/annurev.es.15.110184.000433

    • Search Google Scholar
    • Export Citation
  • Lutts, S., Lefèvre, I., Delpérée, C., Kivits, S., Dechamps, C., Robledo, A. and Correal, E. (2004): Heavy metal accumulation by the halophyte species Mediterranean saltbush. – J. Environ. Qual. 33: 12711279. https://doi.org/10.2134/jeq2004.1271

    • Search Google Scholar
    • Export Citation
  • Mandák, B., Bímová, K., Plačková, I., Mahelka, V. and Chrtek, J. (2005): Loss of genetic variation in geographically marginal populations of Atriplex tatarica (Chenopodiaceae). – Ann. Bot. 96: 901912. https://doi.org/10.1093/aob/mci242

    • Search Google Scholar
    • Export Citation
  • Nesbitt, K. A., Potts, B. M., Vaillancourt, R. E., West, A. K.and Reid, J. B. (1995): Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae). – Heredity 74: 628637. https://doi.org/10.1038/hdy.1995.86

    • Search Google Scholar
    • Export Citation
  • Nevo, E. and Beiles, A. (1989): Genetic diversity of wild emmer wheat in Israel and Turkey. Structure, evolution and application in breeding. – Theor. Appl. Genet. 77: 421455. https://doi.org/10.1007/bf00305839

    • Search Google Scholar
    • Export Citation
  • Nevo, E., Beiles, A. and Krugman, T. (1988): Natural selection of allozyme polymorphisms: a microgeographic differentiation in wild emmer wheat (Triticum dicoccoides). – Theor. Appl. Genet. 75: 529538. https://doi.org/10.1007/bf00276761

    • Search Google Scholar
    • Export Citation
  • Nevo, E., Krugman, T. and Beiles, A. (1994): Edaphic natural selection of allozyme polymorphisms in Aegilops peregrina at a Galilee microsite in Israel. – Heredity 72: 109112. https://doi.org/10.1038/hdy.1994.16

    • Search Google Scholar
    • Export Citation
  • Noble, S. M., Davy, A. J.and Oliver, R. P. (1992): Ribosomal DNA variation and population differentiation in Salicornia L. – New Phytol. 122: 553565. https://doi.org/10.1111/j.1469-8137.1992.tb00085.x

    • Search Google Scholar
    • Export Citation
  • Nybom, H. (2004): Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. – Mol. Ecol. 13: 11431155. https://doi.org/10.1111/j.1365-294x.2004.02141.x

    • Search Google Scholar
    • Export Citation
  • Nybom, H. and Bartish, I. V. (2000): Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. – Perspect. Plant Ecol. Evol. Syst. 3: 93164. https://doi.org/10.1078/1433-8319-00006

    • Search Google Scholar
    • Export Citation
  • Ortíz-Dorda, J., Martínez-Mora, C., Correal, E., Simón, B. and Cenis, J. L. (2005): Genetic structure of Atriplex halimus populations in the Mediterranean Basin. – Ann. Bot. 95: 827834. https://doi.org/10.1093/aob/mci086

    • Search Google Scholar
    • Export Citation
  • Owuor, E. D., Fahima, T., Beiles, A., Korol, A. and Nevo, E. (1997): Population genetic response to microsite ecological stress in barley, Hordeum spontaneum. – Mol. Ecol. 6: 11771187. https://doi.org/10.1046/j.1365-294x.1997.00296.x

    • Search Google Scholar
    • Export Citation
  • Poschlod, P., Dannemann, A., Kahmen, S., Melzheimer, V., Biedermann, H., Mengel, C., Neugebauer, K. R. and Pantle, I. (2000): Genes in the landscapes. Changes in the central European land use and its impact on genetic diversity of plants. – Schriftenreihe für Vegetationskunde 32: 111127.

    • Search Google Scholar
    • Export Citation
  • Reis, M. S. (1996): Dinâmica da movimentação dos alelos: subsídios para conservarção e manejo de populações naturais de plantas. – Brazil. J. Genet. 19: 3747.

    • Search Google Scholar
    • Export Citation
  • Reisch, C., Poschlod, P. and Wingender, R. (2003): Genetic differentiation among populations of Sesleria albicans Kit. ex Schultes (Poaceae) from ecologically different habitats in central Europe. – Heredity 91: 519527. https://doi.org/10.1038/sj.hdy.6800350

    • Search Google Scholar
    • Export Citation
  • Rocap, G., Distel, D. L., Waterbury, B. and Chisholm, S. W. (2002): Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. – Appl. Environ. Microbiol. 68: 11801191. https://doi.org/10.1128/aem.68.3.1180-1191.2002

    • Search Google Scholar
    • Export Citation
  • Rohlf, F. J. (1998): NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 202. – Applied Biostatistics, New York. https://www.exetersoftware.com/downloads/ntsysguide21.pdf

    • Search Google Scholar
    • Export Citation
  • Saitou, N. and Nei, M. (1987): The neighbor-joining method: a new method for reconstruction phylogenetic trees. – Mol. Biol. Evol. 4: 406425. https://doi.org/10.1093/oxford-journals.molbev.a040454

    • Search Google Scholar
    • Export Citation
  • Salim, D. and Gerton, J. L. (2019): Ribosomal DNA instability and genome adaptability. – Chromosome Res. 27: 7387. https://doi.org/10.1007/s10577-018-9599-7

    • Search Google Scholar
    • Export Citation
  • Sambrook, J., Fritsch, E. F.and Maniatis, T. (1989): Molecular cloning: a laboratory manual. – Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1881 pp.

    • Search Google Scholar
    • Export Citation
  • Sheng, Y., Zheng, W., Pei, K. and Ma, K. (2005): Genetic variation within and among populations of a dominant desert tree Haloxylon ammodendron (Amaranthaceae) in China. – Ann. Bot. 96: 245252. https://doi.org/10.1093/aob/mci171

    • Search Google Scholar
    • Export Citation
  • Slatkin, M. (1985): Gene flow in natural population. – Annu. Rev. Ecol. Syst. 16: 393430.https://doi.org/10.1146/annurev.es.16.110185.002141

    • Search Google Scholar
    • Export Citation
  • Slatkin, M. (1994): Gene flow and population structure. – In: Real, L. A. (ed.): Ecological genetics. Princeton University Press, Princeton, NJ, pp. 317.

    • Search Google Scholar
    • Export Citation
  • Slatkin, M. and Barton, N. H. (1989): A comparison of three indirect methods for estimating average levels of gene flow. – Evolution 43: 13491368. https://doi.org/10.1111/j.1558-5646.1989.tb02587.x

    • Search Google Scholar
    • Export Citation
  • Soltis, P. S.and Soltis, D. E. (2000): The role of genetic and genomic attributes in the success of polyploids. – Proceeds Nat. Acad. Sci. USA 97: 70517057. https://doi.org/10.1073/pnas.97.13.7051

    • Search Google Scholar
    • Export Citation
  • Stringi, L., Accardo, A. and Giambalvo, D. (1994): Breeding and methodology in forage shrubs. – In: Papanastasis, V. and Stringi, L. (eds): Fodder trees and shrubs. CIHEAM, Zaragoza, pp. 1334. (Cahiers Options Méditerranéennes; n. 4) https://om.ciheam.org/om/pdf/c04/95605242.pdf

    • Search Google Scholar
    • Export Citation
  • Szmidt, A. E., Wang, X. R. and Lu, M. Z. (1996): Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. – Heredity 76: 412420. https://doi.org/10.1038/hdy.1996.59

    • Search Google Scholar
    • Export Citation
  • Walker, D. J., Moñino, I., González, E., Frayssinet, N. and Correal, E. (2005): Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). – Bot. J. Linn. Soc. 147: 441448. https://doi.org/10.1111/j.1095-8339.2004.00379.x

    • Search Google Scholar
    • Export Citation
  • White, T. J., Bruns, T. and Taylor, J. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. – In: Innis, M. A., Gelfand, D. H., Sninsky, J. J.and White, T. J. (eds): PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315322.

    • Search Google Scholar
    • Export Citation
  • Wright, S. (1949): The genetical structure of populations. – Ann. Eugenet. 15: 323354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x

    • Search Google Scholar
    • Export Citation
  • Wright, S. (1965): The interpretation of population structure by F-statistics with special regard to systems of mating. – Evolution 19: 395420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.x

    • Search Google Scholar
    • Export Citation
  • Zhu, G., Bouharmont, J., Lutts, S. and Kinet, J. M. (2001): Determination of chromosome numbers in Atriplex halimus plants. – Atriplex in vivo 10: 14.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 131 11
Full Text Views 66 7 0
PDF Downloads 29 3 0