The identification of the diversity of microscopic fungi of lithobiont communities of the Argentine Islands in specimens collected during the 22nd Ukrainian Antarctic Expedition was the purpose of this work. Samples of rock, soil, mosses and lichens of rock micro-habitats of “Crustose lichen sub-formation and fruticose lichen and moss cushion sub-formation” were used in the work. These samples were used for extracting and cultivation of filamentous fungi on dense nutrient media. Determination of physiological and biochemical characteristics and identification of yeast-like fungi were performed using a microbiological analyser ‘Vitek-2’ (‘Bio Merieux’, France). Cultivation of microorganisms was carried out at temperatures from +2 to +37 °C. In results cultures of microscopic fungi of Zygomycota (Mucor circinelloides), Ascomycota (species of the genera cf. Tlielebolus, Talaromyces), representatives of the Anamorphic fungi group (Geomyces pannorum, species of the genera Alternaria, Acremonium, Aspergillus, Penicillium, and Cladosporium) were isolated from Antarctic samples. Microscopic fungi Penicillium spp. were dominated after the frequency in the studied samples (54.5%). Rhodotorula rubra and Candida sp. among isolated yeast fungi, and dark pigmented fungi represented by Aureobasidium pulhdans and Exophiala spp. were identified. The biological properties of a number of isolated fungi (the potential ability to synthesise important biologically active substances: melanins, carotenoids, lipids) are characterised. Mycobiota of rock communities of Argentine Islands is rich on filamentous and yeast fungi similarly to other regions of Antarctica. A number of fungi investigated are potentially able to synthesise biologically active substances. The dark pigmented species of the genera Cladosporium, Exophiala, Aureobasidium pulhdans, capable of melanin synthesis; ‘red’ yeast Rhodotorula rubra (carotenoid producers and resistant to toxic metals); Mucor circinelloides and Geomyces pannorum, lipid producers, are among these fungi. Yeast-like fungi assimilated a wide range of carbohydrates, which will allow them to be further used for cultivation in laboratory and process conditions. The collection of technologically promising strains of microorganisms, part of the Culture Collection of Fungi at Taras Shevchenko National University of Kyiv (Ukraine), is updated with isolated species (strains) of filamentous fungi and yeast – potential producers of biologically active substances, obtained within this study.
Bhanja, A., Minde, G., Magdum, S. and Kalyanraman, V. (2014): Comparative studies of oleaginous fungal strains (Mucor circinelloides and Trichoderma reesei) for effective wastewater treatment and bio-oil production. – Biotechnol. Res. Int. 2: 1–7. https://doi.org/10.1155/2014/479370
Biloivanenko, S. O. and Bukhtiyarov, A. Y. (2013): Resistance of Rhodotorula rubra g2/1 to heavy metals and their adsorption. – Microbiol. and Biotechnol. 1: 81–88. https://doi.org/10.18524/2307-4663.2013.1(21).48833 [in Ukrainian]
Boo, S. Y., Wong, C. M. V. L., Rodrigues, K. F., Najimudin, N., Murad, A. M. A. and Mahadi, N. M. (2013): Thermal stress responses in Antarctic yeast, Glaciozyma Antarctica PI12, characterized by real-time quantitative PCR. – Polar Biol. 36: 381–389. https://doi.org/10.1007/s00300-012-1268-2
Boustie, J. and Grube, M. (2005): Lichens a promising source of bioactive secondary metabolites. – Plant Genet. Resour. 3: 273–287. https://doi.org/10.1079/PGR200572
Buzzini, P. and Margesin, R. (2014): Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. – In: Buzzini, P. and Margesin, R. (eds): Cold-adapted yeasts. Biodiversity, adaptation strategies and biotechnological significance. pp. 3–22. https://doi.org/10.1007/978-3-642-39681-6_1
Cary, S. C., McDonald, I. R., Barrett, J. E. and Cowan, A. D. (2010): On the rocks: the microbiology of Antarctic dry valley soils. Review. – Nature Reviews Microbiol. 8: 129–138. https://doi.org/10.1038/nrmicro2281
Chávez, R., Fierro, F., García-Rico, R. O. and Vaca, I. (2015): Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. – Front. Microbiol. 6: 903. https://doi.org/10.3389/fmicb.2015.00903
Cocchietto, M., Skert, N., Nimis, P. L. and Sava, G. (2002): A review on usnic acid, an interesting natural compound. – Naturwissenschaften 89: 137–146. https://doi.org/10.1007/s00114-002-0305-3
Dayan, F. E. and Romagni, J. G. (2001): Lichens a potential source of pesticides. – Pestic Outlook 12: 229–232. https://doi.org/10.1039/b110543b
Dembitsky, V. M. (2015): Bioactive fungal endoperoxides. – Medic. Mycol. 1: 1–7. https://doi.org/10.21767/2471-8521.100005
Deming, J. W. (2009): Extremophiles: cold environments. – In: Schaechter, M. (ed.): Encyclopedia of microbiology. Elsevier, Oxford, pp. 147–158.
Dimitrova, S., Pavlova, K., Lukanov, L., Korotkova, E., Petrova, E., Zagorchev, P. and Kuncheva, M. (2013): Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL1. – Appl. Biochem. Biotechnol. 169 (Is.1.): 301–311. https://doi.org/10.1007/s12010-012-9983-2
Dinica, R. M., Furdui, B., Ghinea, I. O., Bahrim, G., Bonte, S. and Novel, M. (2013): One-pot green synthesis of indolizines biocatalysed by Candida antarctica lipases. – Mar. Drugs 11 (2): 431–439. https://doi.org/10.3390/md11020431
Eisenman, H. C. and Casadevall, A. (2012): Synthesis and assembly of fungal melanin. – Appl. Microbiol. Biotechnol. 93 (3): 931–940. https://doi.org/10.1007/s00253-011-3777-2
El-Gendy, B. El-Dien M. and Rateb, M. E. (2015): Antibacterial activity of diketopiperazines isolated from a marine fungus using t-butoxycarbonyl group as a simple tool for purification. – Bioorg. Med. Chem. Lett. 25 (16): 3125–3128. https://doi.org/10.1016/j.bmcl.2015.06.010
Elix, J. A. (1996): Biochemistry and secondary metabolites. – In: Nash, Th. III, (ed.): Lichen biology. Cambridge University Press, Cambridge, pp. 154–181.
Ellis, M. B. (1989): More Dematiaceous Hyphomycetes. – CAB Inter. Mycological Institute Kew, Surrey, England.
Feofilova, E. P., Sergeeva, Y. E. and Ivashechkin, A. A. (2010): Biodiesel-fuel: content, production, producers, contemporary biotechnology (review). – Appl. Biochem. Microbiol. 46 (4): 369–378. [in Russian]
Ferreira, H. V., Rocha, L. C., Severino, R. P. and Porto A. L. M. (2012): Syntheses of enantiopure aliphatic secondary alcohols and acetates by bioresolution with lipase B from Candida antarctica. – Molecules 17 (8): 8955–8967. https://doi.org/10.3390/mol-ecules17088955
Gonçalves, V. N., Oliveira, F. S., Carvalho, C. R., Schaefer, C. E. G. R., Rosa, C. A. and Rosa, L. H. (2017): Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. – Extremophiles 21 (5): 851–860. https://doi.org/10.1007/s00792-017-0947-x
Held, B. W., Jurgens, J. A., Duncan, S. M., Farrell, R. L. and Blanchette, R. A. (2005): Assessment of fungal diversity and deterioration in a wooden structure at New Harbour, Antarctica. – Polar Biol. 25 (3): 293–299. https://doi.org/10.1007/s00300-005-0084-3
Henríquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., Araya, I., Chávez, R., San-Martín, A., Darias, J., Darias, M. J. and Vaca, I. (2014): Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. – World J. Microbiol. Biotechnol. 30 (1): 65–76. https://doi.org/10.1007/s11274-013-1418-x
Huneck, S. (1999): The significance of lichens and their metabolites. – Naturwissenschaften 86: 559–570.
Huneck, S. and Yoshimura, I. (1996): Identification of lichen substances. – Springer, Berlin, Heidelberg.
Jagannadham, M. V., Chattopadhyay, M. K. and Subbalakshmi, C. (2000): Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. – Arch. Microbiol. 173(5–6): 418–424. https://doi.org/10.1007/s002030000163
Kartsev, V., Lichitsky, B., Geronikaki, A., Petrou, A., Smiljkovic, M., Kostic, M., Radanovic, O. and Soković, M. (2018): Design, synthesis and antimicrobial activity of usnic acid derivatives. – Med. Chem. Comm. 9: 870–882. https://doi.org/10.1039/c8md00076j
Kirk, P. M., Cannon, P. F., David, J. C. and Stalpers, J. A. (eds) (2001): Ainsworth and Bisby's dictionary of the fungi. 9th ed. – CABI Bioscience, Egham, 624 pp.
Kochkina, G. A., Ivanushkina, N. E. and Ozerskaya, S. M. (2011): The structure of mycobiota in permafrost. – In: Dyakov, Yu. T. and Sergeev, A. Yu. (eds): Mycology today. V. 2. pp. 178–186. http://www.mycology.ru/nam/pdf/mycologytoday2011vol2.pdf [in Russian]
Kondratiuk, T. O., Beregova, T. V. and Ostapchenko, L. I. (2016): Diversity of Antarctic microorganisms – potential producers of biologically active substances. – Ukr. Antarc. J. 15: 153–159.
Kondratiuk, T., Akulenko, T., Beregova, T. and Ostapchenko, L. (2017): Microorganisms, perspective for biotechnology, medicine, environmental technologies, in the collection of microscopic fungi ESC “Institute of biology and medicine”, Taras Shevchenko national university of Kyiv. – Bull. Taras Shevchenko Nat. Univ. Kyiv. Ser. Biol. 73: 31–36. https://doi.org/10.17721/1728_2748.2017.73.31-36
Kondratyuk, S. Ya. (2008): Indication of the state of the environment of Ukraine with lichens.[Індикація стану навколишнього середовища України за допомогою лишайників]. – Naukova dumka, Kiev, 336 pp. [in Ukrainian]
Kondratyuk, S. Y., Lőkös, L., Jang, S.-H., Hur, J.-S. and Farkas, E. (2019a): Phylogeny and taxonomy of Polyozosia, Sedelnikovaea and Verseghya of the Lecanoraceae (Lecanorales, lichen-forming Ascomycota). – Acta Bot. Hung. 61(1–2): 137–184. https://doi.org/10.1556/034.61.2019.1-2.9
Kondratyuk, S. Y., Lőkös, L., Farkas, E., Jang, S.-H., Liu, D., Halda, J., Persson, P.-E., Hansson, M., Kärnefelt, I., Thell, A. and Hur, J.-S. (2019b): Three new genera of the Ramalinaceae (lichen-forming Ascomycota) and the phenomenon of presence of ‘extraneous mycobiont DNA’ in lichen associations. – Acta Bot. Hung. 61(3–4): 275–323. https://doi.org/10.1556/034.61.2019.3-4.5
Kondratyuk, S. Y., Lőkös, L., Farkas, E., Jang, S.-H., Liu, D., Halda, J., Persson, P.-E., Hansson, M., Kärnefelt, I., Thell, A., Fačkovcová, Z., Yamamoto, Y. and Hur, J.-S. (2019c): New and noteworthy lichen-forming and lichenicolous fungi 9. – Acta Bot. Hung. 61(3–4): 325–367. https://doi.org/10.1556/034.61.2019.3-4.6
Konova, I. V., Sergeeva, Ya. E., Galanina, L. A., Kochkina, G. A., Ivanushkina, N. E. and Ozerskaya, S. M. (2009): Lipid synthesis by Geomyces pannorum under the impact of stress factors. – Mikrobiologiia 78 (1): 52–58. PMID: 19334597
Molnár, K. and Farkas, E. (2010): Current results on biological activities of lichen secondary metabolites: a review. – Z. Naturforsch., C: J. Biosci. 65(3–4): 157–173. https://doi.org/10.1515/znc-2010-3-401
Muller, K. (2001): Pharmaceutically relevant metabolites from lichens. – Appl. Microbiol. Biotechnol. 56: 9–16. https://doi.org/10.1007/s002530100684
Newsham, K. K., Hopkins, D. W., Carvalhais, L. C., Fretwell, P. T., Rushton, S. P., O'Donnell, A. G. and Dennis, P. G. (2016): Relationship between soil fungal diversity and temperature in the maritime Antarctic. – Nature Climate Change 6: 182–186. https://doi.org/10.1038/nclimate2806
Øvstedal, D. O. and Lewis Smith, R. I. (2001): Lichens of Antarctica and South Georgia: a guide to their identification and ecology. – Studies in Polar Research, Cambridge University Press, Cambridge, England.
Panin, A. L., Belov, A. B., Kraeva, L. A., Bolehan, V. N., Vladimirov, N. G., Goncharov, A. E., Vlasov, D. Yu., Teshebaev, S. B., Sharov, A. N. and Tolstikov, A. V. (2014): Microbiological monitoring of Antarctica as risk predictor of the Earth's climate changes. – Proceedings of the Belarusian State University. Physiological, biochemical and molecular basis for the functioning of biosystems. [Труды Белорусского гос. университета. Физиологические, биохимические и молекулярные основы функционирования биосистем] 9(2): 68–81. http://elib.bsu.by/handle/123456789/120794 [in Russian]
Parnikoza, I., Berezkina, A., Moiseyenko, Y., Malanchuk, V. and Kunakh, V. (2018): Complex survey of the Argentine Islands and Galindez Isl and (maritime Antarctic) as a research area for studying the dynamics of terrestrial vegetation. – Ukr. Antarc. J. 1 (17): 73–101. https://doi.org/10.33275/1727-7485.1(17).2018.34
Paudel, B., Bhattarai, H. D., Lee, H. K., Oh, H., Shin, H. W. and Yim, J. H. (2010): Antibacterial activities of ramalin, usnic acid and its three derivatives isolated from the Antarctic lichen Ramalina terebrata. – Z. Naturforsch., C: J. Biosci. 65(1–2): 34–38. https://doi.org/10.1515/znc-2010-1-206
Plonka, P. M. and Grabacka, M. (2006): Melanin synthesis in microorganisms – biotechnological and medical aspects. Review. – Acta biochim. polon. 53 (3): 429–443. PMID: 16951740
Poma, H. R., Gutiérrez Cacciabue, D., Garcé, B., Gonzo, E. E. and Rajal, V. B. (2012): Towards a rational strategy for monitoring of microbiological quality of ambient waters. – Sci. Total Environ. 433: 98–109. https://doi.org/10.1016/j.scitotenv.2012.06.019
Robinson, C. H. (2001): Cold adaptation in Arctic and Antarctic fungi. – New Phytol. 151: 341–353. https://doi.org/10.1046/j.1469-8137.2001.00177.x
Romanovskaya, V. A., Tashyrev, O. B., Rokitko, P. V., Shilin, S. O., Chernaya, N. A. and Tashyreva, A. O. (2009): Microbial diversity in terrestrial Antarctic biotopes. – Ukr. Antarc. J. 8: 364–369.
Samson, R. A., Hoekstra, E. S. and Frisvad, J. C. (2004): Introduction to food and airborne fungi. 7th ed. – Ponsen and Looyen, Wageningen, Netherlands.
Svahn, S. K., Chryssanthou, E., Olsen, B., Bohlin, L. and Göransson, U. (2015): Pénicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. – Fungal Biol. Biotechnol. 2 (1): 2–11. https://doi.org/10.1186/s40694-014-0011-x
Taha, A. I. B. H. M., Ahmed, R. Z., Motoigi, T., Watanabe, K., Kurosawa, N. and Okuyama, H. (2013): Lipids in cold-adapted microorganisms. – In: Yumoto, I. (ed.): Cold-adapted microorganisms. Caister Academic Press, Wymondham, UK, pp. 189–214.
Tashyrev, A. B., Romanovskaya, V. A., Rokitko, P. V., Matveeva, N. A., Shilin, S. O. and Tashyreva, A. A. (2012): Synthesis of melanin pigments by Antarctic black yeast. – Microbiol. zhurn. 74 (5): 2–8.
Tauk-Tornisielo, S. M., Arasato, L. S., de Almeida, A. F., Govone, J. S. and Malagutti, E. N. (2009): Lipid formation and γ-linolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil. – Brazil. J. Microbiol. 40: 342–345. https://doi.org/10.1590/S1517-838220090002000025
Turchetti, B., Goretti, M., Branda, E., Diolaiuti, G., D'Agata, C., Smiraglia, C., Onofri, A. and Buzzini, P. (2013): Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. – FEMS Microbiol. Ecol. 86 (2): 327–340. https://doi.org/10.1111/1574-6941.12164