View More View Less
  • 1 Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, Kyiv 01601, Ukraine
  • 2 National Antarctic Scientific Centre of Ministry of Education and Science of Ukraine, Taras Shevchenko boulevard 16, Kyiv 01601, Ukraine
  • 3 NAS of Ukraine, Academician Zabolotny str. 150, Kyiv 03143, Ukraine
  • 4 NAS of Ukraine, Tereshchenkivska str. 2, Kyiv 01004, Ukraine
  • 5 Lund University, Box 117, SE-22100 Lund, Sweden
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $692.00

The identification of the diversity of microscopic fungi of lithobiont communities of the Argentine Islands in specimens collected during the 22nd Ukrainian Antarctic Expedition was the purpose of this work. Samples of rock, soil, mosses and lichens of rock micro-habitats of “Crustose lichen sub-formation and fruticose lichen and moss cushion sub-formation” were used in the work. These samples were used for extracting and cultivation of filamentous fungi on dense nutrient media. Determination of physiological and biochemical characteristics and identification of yeast-like fungi were performed using a microbiological analyser ‘Vitek-2’ (‘Bio Merieux’, France). Cultivation of microorganisms was carried out at temperatures from +2 to +37 °C. In results cultures of microscopic fungi of Zygomycota (Mucor circinelloides), Ascomycota (species of the genera cf. Tlielebolus, Talaromyces), representatives of the Anamorphic fungi group (Geomyces pannorum, species of the genera Alternaria, Acremonium, Aspergillus, Penicillium, and Cladosporium) were isolated from Antarctic samples. Microscopic fungi Penicillium spp. were dominated after the frequency in the studied samples (54.5%). Rhodotorula rubra and Candida sp. among isolated yeast fungi, and dark pigmented fungi represented by Aureobasidium pulhdans and Exophiala spp. were identified. The biological properties of a number of isolated fungi (the potential ability to synthesise important biologically active substances: melanins, carotenoids, lipids) are characterised. Mycobiota of rock communities of Argentine Islands is rich on filamentous and yeast fungi similarly to other regions of Antarctica. A number of fungi investigated are potentially able to synthesise biologically active substances. The dark pigmented species of the genera Cladosporium, Exophiala, Aureobasidium pulhdans, capable of melanin synthesis; ‘red’ yeast Rhodotorula rubra (carotenoid producers and resistant to toxic metals); Mucor circinelloides and Geomyces pannorum, lipid producers, are among these fungi. Yeast-like fungi assimilated a wide range of carbohydrates, which will allow them to be further used for cultivation in laboratory and process conditions. The collection of technologically promising strains of microorganisms, part of the Culture Collection of Fungi at Taras Shevchenko National University of Kyiv (Ukraine), is updated with isolated species (strains) of filamentous fungi and yeast – potential producers of biologically active substances, obtained within this study.

  • Bhanja, A., Minde, G., Magdum, S. and Kalyanraman, V. (2014): Comparative studies of oleaginous fungal strains (Mucor circinelloides and Trichoderma reesei) for effective wastewater treatment and bio-oil production. – Biotechnol. Res. Int. 2: 17. https://doi.org/10.1155/2014/479370

    • Search Google Scholar
    • Export Citation
  • Biloivanenko, S. O. and Bukhtiyarov, A. Y. (2013): Resistance of Rhodotorula rubra g2/1 to heavy metals and their adsorption. – Microbiol. and Biotechnol. 1: 8188. https://doi.org/10.18524/2307-4663.2013.1(21).48833 [in Ukrainian]

    • Search Google Scholar
    • Export Citation
  • Boo, S. Y., Wong, C. M. V. L., Rodrigues, K. F., Najimudin, N., Murad, A. M. A. and Mahadi, N. M. (2013): Thermal stress responses in Antarctic yeast, Glaciozyma Antarctica PI12, characterized by real-time quantitative PCR. – Polar Biol. 36: 381389. https://doi.org/10.1007/s00300-012-1268-2

    • Search Google Scholar
    • Export Citation
  • Boustie, J. and Grube, M. (2005): Lichens a promising source of bioactive secondary metabolites. – Plant Genet. Resour. 3: 273287. https://doi.org/10.1079/PGR200572

    • Search Google Scholar
    • Export Citation
  • Buzzini, P. and Margesin, R. (2014): Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. – In: Buzzini, P. and Margesin, R. (eds): Cold-adapted yeasts. Biodiversity, adaptation strategies and biotechnological significance. pp. 322. https://doi.org/10.1007/978-3-642-39681-6_1

    • Search Google Scholar
    • Export Citation
  • Cary, S. C., McDonald, I. R., Barrett, J. E. and Cowan, A. D. (2010): On the rocks: the microbiology of Antarctic dry valley soils. Review. – Nature Reviews Microbiol. 8: 129138. https://doi.org/10.1038/nrmicro2281

    • Search Google Scholar
    • Export Citation
  • Chávez, R., Fierro, F., García-Rico, R. O. and Vaca, I. (2015): Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. – Front. Microbiol. 6: 903. https://doi.org/10.3389/fmicb.2015.00903

    • Search Google Scholar
    • Export Citation
  • Cocchietto, M., Skert, N., Nimis, P. L. and Sava, G. (2002): A review on usnic acid, an interesting natural compound. – Naturwissenschaften 89: 137146. https://doi.org/10.1007/s00114-002-0305-3

    • Search Google Scholar
    • Export Citation
  • Dayan, F. E. and Romagni, J. G. (2001): Lichens a potential source of pesticides. – Pestic Outlook 12: 229232. https://doi.org/10.1039/b110543b

    • Search Google Scholar
    • Export Citation
  • Dembitsky, V. M. (2015): Bioactive fungal endoperoxides. – Medic. Mycol. 1: 17. https://doi.org/10.21767/2471-8521.100005

  • Deming, J. W. (2009): Extremophiles: cold environments. – In: Schaechter, M. (ed.): Encyclopedia of microbiology. Elsevier, Oxford, pp. 147158.

    • Search Google Scholar
    • Export Citation
  • Dimitrova, S., Pavlova, K., Lukanov, L., Korotkova, E., Petrova, E., Zagorchev, P. and Kuncheva, M. (2013): Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL1. – Appl. Biochem. Biotechnol. 169 (Is.1.): 301311. https://doi.org/10.1007/s12010-012-9983-2

    • Search Google Scholar
    • Export Citation
  • Dinica, R. M., Furdui, B., Ghinea, I. O., Bahrim, G., Bonte, S. and Novel, M. (2013): One-pot green synthesis of indolizines biocatalysed by Candida antarctica lipases. – Mar. Drugs 11 (2): 431439. https://doi.org/10.3390/md11020431

    • Search Google Scholar
    • Export Citation
  • Eisenman, H. C. and Casadevall, A. (2012): Synthesis and assembly of fungal melanin. – Appl. Microbiol. Biotechnol. 93 (3): 931940. https://doi.org/10.1007/s00253-011-3777-2

    • Search Google Scholar
    • Export Citation
  • El-Gendy, B. El-Dien M. and Rateb, M. E. (2015): Antibacterial activity of diketopiperazines isolated from a marine fungus using t-butoxycarbonyl group as a simple tool for purification. – Bioorg. Med. Chem. Lett. 25 (16): 31253128. https://doi.org/10.1016/j.bmcl.2015.06.010

    • Search Google Scholar
    • Export Citation
  • Elix, J. A. (1996): Biochemistry and secondary metabolites. – In: Nash, Th. III, (ed.): Lichen biology. Cambridge University Press, Cambridge, pp. 154181.

    • Search Google Scholar
    • Export Citation
  • Ellis, M. B. (1989): More Dematiaceous Hyphomycetes.CAB Inter. Mycological Institute Kew, Surrey, England.

  • Feofilova, E. P., Sergeeva, Y. E. and Ivashechkin, A. A. (2010): Biodiesel-fuel: content, production, producers, contemporary biotechnology (review). – Appl. Biochem. Microbiol. 46 (4): 369378. [in Russian]

    • Search Google Scholar
    • Export Citation
  • Ferreira, H. V., Rocha, L. C., Severino, R. P. and Porto A. L. M. (2012): Syntheses of enantiopure aliphatic secondary alcohols and acetates by bioresolution with lipase B from Candida antarctica. – Molecules 17 (8): 89558967. https://doi.org/10.3390/mol-ecules17088955

    • Search Google Scholar
    • Export Citation
  • Gonçalves, V. N., Oliveira, F. S., Carvalho, C. R., Schaefer, C. E. G. R., Rosa, C. A. and Rosa, L. H. (2017): Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. – Extremophiles 21 (5): 851860. https://doi.org/10.1007/s00792-017-0947-x

    • Search Google Scholar
    • Export Citation
  • Held, B. W., Jurgens, J. A., Duncan, S. M., Farrell, R. L. and Blanchette, R. A. (2005): Assessment of fungal diversity and deterioration in a wooden structure at New Harbour, Antarctica. – Polar Biol. 25 (3): 293299. https://doi.org/10.1007/s00300-005-0084-3

    • Search Google Scholar
    • Export Citation
  • Henríquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., Araya, I., Chávez, R., San-Martín, A., Darias, J., Darias, M. J. and Vaca, I. (2014): Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. – World J. Microbiol. Biotechnol. 30 (1): 6576. https://doi.org/10.1007/s11274-013-1418-x

    • Search Google Scholar
    • Export Citation
  • Huneck, S. (1999): The significance of lichens and their metabolites. – Naturwissenschaften 86: 559570.

  • Huneck, S. and Yoshimura, I. (1996): Identification of lichen substances.Springer, Berlin, Heidelberg.

  • Jagannadham, M. V., Chattopadhyay, M. K. and Subbalakshmi, C. (2000): Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. – Arch. Microbiol. 173(56): 418424. https://doi.org/10.1007/s002030000163

    • Search Google Scholar
    • Export Citation
  • Kartsev, V., Lichitsky, B., Geronikaki, A., Petrou, A., Smiljkovic, M., Kostic, M., Radanovic, O. and Soković, M. (2018): Design, synthesis and antimicrobial activity of usnic acid derivatives. – Med. Chem. Comm. 9: 870882. https://doi.org/10.1039/c8md00076j

    • Search Google Scholar
    • Export Citation
  • Kirk, P. M., Cannon, P. F., David, J. C. and Stalpers, J. A. (eds) (2001): Ainsworth and Bisby's dictionary of the fungi. 9th ed. – CABI Bioscience, Egham, 624 pp.

    • Search Google Scholar
    • Export Citation
  • Kochkina, G. A., Ivanushkina, N. E. and Ozerskaya, S. M. (2011): The structure of mycobiota in permafrost. – In: Dyakov, Yu. T. and Sergeev, A. Yu. (eds): Mycology today. V. 2. pp. 178186. http://www.mycology.ru/nam/pdf/mycologytoday2011vol2.pdf [in Russian]

    • Search Google Scholar
    • Export Citation
  • Kondratiuk, T. O., Beregova, T. V. and Ostapchenko, L. I. (2016): Diversity of Antarctic microorganisms – potential producers of biologically active substances. – Ukr. Antarc. J. 15: 153159.

    • Search Google Scholar
    • Export Citation
  • Kondratiuk, T., Akulenko, T., Beregova, T. and Ostapchenko, L. (2017): Microorganisms, perspective for biotechnology, medicine, environmental technologies, in the collection of microscopic fungi ESC “Institute of biology and medicine”, Taras Shevchenko national university of Kyiv. – Bull. Taras Shevchenko Nat. Univ. Kyiv. Ser. Biol. 73: 3136. https://doi.org/10.17721/1728_2748.2017.73.31-36

    • Search Google Scholar
    • Export Citation
  • Kondratyuk, S. Ya. (2008): Indication of the state of the environment of Ukraine with lichens.[Індикація стану навколишнього середовища України за допомогою лишайників]. – Naukova dumka, Kiev, 336 pp. [in Ukrainian]

    • Search Google Scholar
    • Export Citation
  • Kondratyuk, S. Y., Lőkös, L., Jang, S.-H., Hur, J.-S. and Farkas, E. (2019a): Phylogeny and taxonomy of Polyozosia, Sedelnikovaea and Verseghya of the Lecanoraceae (Lecanorales, lichen-forming Ascomycota). – Acta Bot. Hung. 61(12): 137184. https://doi.org/10.1556/034.61.2019.1-2.9

    • Search Google Scholar
    • Export Citation
  • Kondratyuk, S. Y., Lőkös, L., Farkas, E., Jang, S.-H., Liu, D., Halda, J., Persson, P.-E., Hansson, M., Kärnefelt, I., Thell, A. and Hur, J.-S. (2019b): Three new genera of the Ramalinaceae (lichen-forming Ascomycota) and the phenomenon of presence of ‘extraneous mycobiont DNA’ in lichen associations. – Acta Bot. Hung. 61(34): 275323. https://doi.org/10.1556/034.61.2019.3-4.5

    • Search Google Scholar
    • Export Citation
  • Kondratyuk, S. Y., Lőkös, L., Farkas, E., Jang, S.-H., Liu, D., Halda, J., Persson, P.-E., Hansson, M., Kärnefelt, I., Thell, A., Fačkovcová, Z., Yamamoto, Y. and Hur, J.-S. (2019c): New and noteworthy lichen-forming and lichenicolous fungi 9. – Acta Bot. Hung. 61(34): 325367. https://doi.org/10.1556/034.61.2019.3-4.6

    • Search Google Scholar
    • Export Citation
  • Konova, I. V., Sergeeva, Ya. E., Galanina, L. A., Kochkina, G. A., Ivanushkina, N. E. and Ozerskaya, S. M. (2009): Lipid synthesis by Geomyces pannorum under the impact of stress factors. – Mikrobiologiia 78 (1): 5258. PMID: 19334597

    • Search Google Scholar
    • Export Citation
  • Molnár, K. and Farkas, E. (2010): Current results on biological activities of lichen secondary metabolites: a review. – Z. Naturforsch., C: J. Biosci. 65(34): 157173. https://doi.org/10.1515/znc-2010-3-401

    • Search Google Scholar
    • Export Citation
  • Muller, K. (2001): Pharmaceutically relevant metabolites from lichens. – Appl. Microbiol. Biotechnol. 56: 916. https://doi.org/10.1007/s002530100684

    • Search Google Scholar
    • Export Citation
  • Newsham, K. K., Hopkins, D. W., Carvalhais, L. C., Fretwell, P. T., Rushton, S. P., O'Donnell, A. G. and Dennis, P. G. (2016): Relationship between soil fungal diversity and temperature in the maritime Antarctic. – Nature Climate Change 6: 182186. https://doi.org/10.1038/nclimate2806

    • Search Google Scholar
    • Export Citation
  • Øvstedal, D. O. and Lewis Smith, R. I. (2001): Lichens of Antarctica and South Georgia: a guide to their identification and ecology. – Studies in Polar Research, Cambridge University Press, Cambridge, England.

    • Search Google Scholar
    • Export Citation
  • Panin, A. L., Belov, A. B., Kraeva, L. A., Bolehan, V. N., Vladimirov, N. G., Goncharov, A. E., Vlasov, D. Yu., Teshebaev, S. B., Sharov, A. N. and Tolstikov, A. V. (2014): Microbiological monitoring of Antarctica as risk predictor of the Earth's climate changes. – Proceedings of the Belarusian State University. Physiological, biochemical and molecular basis for the functioning of biosystems. [Труды Белорусского гос. университета. Физиологические, биохимические и молекулярные основы функционирования биосистем] 9(2): 6881. http://elib.bsu.by/handle/123456789/120794 [in Russian]

    • Search Google Scholar
    • Export Citation
  • Parnikoza, I., Berezkina, A., Moiseyenko, Y., Malanchuk, V. and Kunakh, V. (2018): Complex survey of the Argentine Islands and Galindez Isl and (maritime Antarctic) as a research area for studying the dynamics of terrestrial vegetation. – Ukr. Antarc. J. 1 (17): 73101. https://doi.org/10.33275/1727-7485.1(17).2018.34

    • Search Google Scholar
    • Export Citation
  • Paudel, B., Bhattarai, H. D., Lee, H. K., Oh, H., Shin, H. W. and Yim, J. H. (2010): Antibacterial activities of ramalin, usnic acid and its three derivatives isolated from the Antarctic lichen Ramalina terebrata. – Z. Naturforsch., C: J. Biosci. 65(12): 3438. https://doi.org/10.1515/znc-2010-1-206

    • Search Google Scholar
    • Export Citation
  • Plonka, P. M. and Grabacka, M. (2006): Melanin synthesis in microorganisms – biotechnological and medical aspects. Review. – Acta biochim. polon. 53 (3): 429443. PMID: 16951740

    • Search Google Scholar
    • Export Citation
  • Poma, H. R., Gutiérrez Cacciabue, D., Garcé, B., Gonzo, E. E. and Rajal, V. B. (2012): Towards a rational strategy for monitoring of microbiological quality of ambient waters. – Sci. Total Environ. 433: 98109. https://doi.org/10.1016/j.scitotenv.2012.06.019

    • Search Google Scholar
    • Export Citation
  • Robinson, C. H. (2001): Cold adaptation in Arctic and Antarctic fungi. – New Phytol. 151: 341353. https://doi.org/10.1046/j.1469-8137.2001.00177.x

    • Search Google Scholar
    • Export Citation
  • Romanovskaya, V. A., Tashyrev, O. B., Rokitko, P. V., Shilin, S. O., Chernaya, N. A. and Tashyreva, A. O. (2009): Microbial diversity in terrestrial Antarctic biotopes. – Ukr. Antarc. J. 8: 364369.

    • Search Google Scholar
    • Export Citation
  • Samson, R. A., Hoekstra, E. S. and Frisvad, J. C. (2004): Introduction to food and airborne fungi. 7th ed. – Ponsen and Looyen, Wageningen, Netherlands.

    • Search Google Scholar
    • Export Citation
  • Svahn, S. K., Chryssanthou, E., Olsen, B., Bohlin, L. and Göransson, U. (2015): Pénicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. – Fungal Biol. Biotechnol. 2 (1): 211. https://doi.org/10.1186/s40694-014-0011-x

    • Search Google Scholar
    • Export Citation
  • Taha, A. I. B. H. M., Ahmed, R. Z., Motoigi, T., Watanabe, K., Kurosawa, N. and Okuyama, H. (2013): Lipids in cold-adapted microorganisms. – In: Yumoto, I. (ed.): Cold-adapted microorganisms. Caister Academic Press, Wymondham, UK, pp. 189214.

    • Search Google Scholar
    • Export Citation
  • Tashyrev, A. B., Romanovskaya, V. A., Rokitko, P. V., Matveeva, N. A., Shilin, S. O. and Tashyreva, A. A. (2012): Synthesis of melanin pigments by Antarctic black yeast. – Microbiol. zhurn. 74 (5): 28.

    • Search Google Scholar
    • Export Citation
  • Tauk-Tornisielo, S. M., Arasato, L. S., de Almeida, A. F., Govone, J. S. and Malagutti, E. N. (2009): Lipid formation and γ-linolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil. – Brazil. J. Microbiol. 40: 342345. https://doi.org/10.1590/S1517-838220090002000025

    • Search Google Scholar
    • Export Citation
  • Turchetti, B., Goretti, M., Branda, E., Diolaiuti, G., D'Agata, C., Smiraglia, C., Onofri, A. and Buzzini, P. (2013): Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. – FEMS Microbiol. Ecol. 86 (2): 327340. https://doi.org/10.1111/1574-6941.12164

    • Search Google Scholar
    • Export Citation
  • www.mycobank.org/quicksearch.aspx

  • www.speciesfungorum.org/Names/Names.asp

The author instruction is available in PDF.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Ecology, Evolution, Behavior and Systematics SJR Quartile Score (2018): Q2
  • Plant Science SJR Quartile Score (2018): Q2
  • Scimago Journal Rank (2018): 0.53
  • SJR Hirsch-Index (2018): 15

Language: English, French, German, Russian, Spanish

Founded in 1954
Publication: One volume of four issues annually
Publication Programme: 2020: Vol. 62
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Referativnyi Zhurnal

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Botta-Dukát, Zoltán

Honorary Editor(s)-in-Chief: Borhidi, Attila

Managing Editors

Lökős, László

Peregovits, László

Editorial Board

Botta-Dukát, Zoltán
E-mail: botta-dukat.zoltan@okologia.mta.hu

or

Lőkös, László
E-mail: acta@bot.nhmus.hu
Institute: Botanical Department, Hungarian Natural History Museum
Address: Könyves K. krt. 40. H-1097 Budapest, Hungary