Both the primary and secondary metabolisms of higher plants are influenced by environmental conditions. Peganum harmala L. synthesise amazing diversity of secondary metabolites, such as alkaloids, volatile oils, triterpenes or sterols. We have no detailed information on genetic chemical contents and particularly the fatty acid contents of this plant species in Iran. Therefore, population-based fatty acid and alkaloid analyses were conducted in four geographical populations. Seeds fatty acid analysis revealed linoleic acid, oleic acid and palmitic acid were the main components in seeds oil. The highest fatty acid component was the linoleic acid in both mature and premature seeds of four studied populations. Low levels of 18:3/18:2 ratio in mature seeds (>0.01) in comparison to premature seeds (> 0.04) were found. Grouping of the populations by WARD clustering, separated mature seeds from premature seeds. CCA plot of P. harmala populations based on fatty acid contents, revealing the influence of geographical features on population differentiation. The main alkaloid contents in premature and mature seeds were harmine and harmaline. PCoA plots of the studied populations based on alkaloid contents for both premature and mature seeds separated the populations from each other.
Albishri, H. M., Almaghrabi, O. A. and Moussa, T. A. A. (2013): Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy. - Pharmacogn. Mag. 9(33): 56–64. https://doi.org/10.4103/0973-1296.108142
Almaghrabi, O. A. and Moussa, T. A. A. (2016): Fatty acid constituents of Peganum har- mala plant using gas chromatography-mass spectroscopy. - Saudi J. Biol. Sci. 23(3): 397–403. https://doi.org/10.1016/j.sjbs.2015.04.013
Bagci, E., Geng, H. and Sahun, A. (2001): Fatty acid composition of four Lathyrus aphaca L. varieties, a chemotaxonomic approach. - Pak. J. Biol. Sci. 4(7): 872–874. https://doi.org/10.3923/pjbs.2001.872.874
Cao, M., Fraser, K., Jones, C. H., Stewart, A., Lyons, T., Faville, M. and Barrett, B. (2017): Untargeted metabotyping Lolium perenne reveals population-level variation in plant flavonoids and alkaloids. - Front. Plant. Sci. 8: 133. https://doi.org/10.3389/ fpls.2017.00133
Carvalho, P. O., Arrebola, M. B., Sawaya, A. Ch. F., Cunha, I. B. S., Bastos, D. H. M. and Eberlin, M. N. (2006): Comparative study of lipids in mature seeds of six Cordia species (family Boraginaceae) collected in different regions. - Lipids 41: 813–817. https:// doi.org/10.1007/s11745-006-5035-4
El-Bakatoushi, R. and Aseel Ahmed, D. G. (2018): Evaluation of genetic diversity in wild populations of Peganum harmala L., a medicinal plant. - J. Genet. Eng. Biotechnol. 16(1): 143–151. https://doi.org/10.1016/j.jgeb.2017.11.007
Fernie, A. R. and Klee, H. J. (2011): The use of natural genetic diversity in the understanding of metabolic organization and regulation. - Front. Plant Sci., Vol. 2, Article 59. https://doi. org/10.3389/fpls.2011.00059
Gargallo-Garriga, A., Gargallo, G., Sardans, J., Perez-Trujillo, M., Rivas-Ubach, A., Oravec, M., Vecerova, K., Urban, O., Jentsch, A., Kreyling, J., Beierkuhnlein, C., Parella, T. and Penuelas, J. (2014): Opposite metabolic responses of shoots and roots to drought. - Sci. Rep. 4: 6829. https://doi.org/10.1038/srep06829
Goudarzi, M. and Azimi, H. (2016): Antimicrobial activity of Peganum harmala against methicillin-resistant Staphylococcus aureus strains and assessment of its cytotoxicity effect on HEK-293 cells. - Int. J. Infect. 4(4): e15592. https://doi.org/10.5812/iji.15592
Guil-Guerrero, J. L., Gomez-Mercado, F., Rodriguez-Garcia, I., Campra-Madrid, P. and Garcia-Maroto, F. (2001): Occurrence and characterization of oils rich in y-linolenic acid (III): the taxonomical value of the fatty acids in Echium (Boraginaceae). - Phyto- chemistry 58(1): 117–120. https://doi.org/10.1016/s0031-9422(01)00184-4
Herraiz, T., Gonzalez, D., Ancin-Azpilicueta, C., Aran, V. J. and Guillen, H. (2010): p-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). - FoodChem. Toxicol. 48: 839–845. https://doi.org/10.1016/jict.2009.12.019
Jones, O. A. H., Maguire, M. L., Griffin, J. L., Dias, D. A., Spurgeon, D. J. and Svendsen, C. (2013): Metabolomics and its use in ecology. - Austral. Ecol. 38(6): 713–720. https://doi. org/10.1111/aec.12019
Kamel, K. A., Swiecicki, W., Kaczmarek, Z. and Barzyk, P. (2016): Quantitative and qualitative content of alkaloids in seeds of a narrow-leafed lupin (Lupinus angustifolius L.) collection. - Genetic Resources and Crop Evolution 63: 711–719. https://doi.org/10.1007/ s10722-015-0278-7
Kartal, M., Altun, M. L. and Kurucu, S. (2003): HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala. - J. Pharm. Bi- omed. Anal. 31: 263–269. https://doi.org/10.1016/S0731-7085(02)00568-X
Kramer, J. K. G., Fellner, V., Dugan, M. E. R., Sauer, F. D., Mossoba, M. M. and Yurawecz, M. P. (1997): Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. - >Lipids 32(11): 1219–1228. https://doi.org/10.1007/s11745-997-0156-3
Kroc, M., Rybinski, W., Wilczura, P., Kamel, K., Kaczmarek, Z., Barzyk, P. and Swiecicki, W. (2017): Quantitative and qualitative analysis of alkaloids composition in the seeds of a white lupin (Lupinus albus L.) collection. - Genet. Resour. Crop. Evol. 64(8): 18531860. https://doi.org/10.1007/s10722-016-0473-1
Kumar, R. and Kumari, M. (2018): Adaptive mechanisms of medicinal plants along altitude gradient: contribution of proteomics. - Biologia plantarum 62: 630–640. https:// doi.org/10.1007/s10535-018-0817-0
Lamarque, A. L. and Guzman, C. A. (1997): Seed chemical variation in Prosopis chilensis from Argentina. - Genet. Resour. Crop. Evol. 44(6): 495–498.
Li, Y., He, Q., Du, S., Guo, S., Geng Z. and Deng, Z. (2018): Study of methanol extracts from different parts of Peganum harmala L. using 1H-NMR plant metabolomics. - J. Anal. Methods Chem. 20: 1–9. https://doi.org/10.1155/2018/6532789
Macel, M., van Dam, N. M. and Keurentjes, J. J. B. (2010): Metabolomics: the chemistry between ecology and genetics. - Mol. Ecol. Resour. 10(4): 583–593. https://doi. org/10.1111/j.1755-0998.2010.02854.x
Marin, P. D., Sajdl, V., Kapor, S., Tatic, B. and Petkovic, B. (1991): Fatty acids of the Satu- rejoideae, Ajugoideae and Scutellarioideae (Lamiaceae). - Phytochemistry 30: 29792982. https://doi.org/10.1016/s0031-9422(00)98235-9
Moloudizargari, M., Mikaili, P., Aghajanshakeri, S., Asghari, M. H. and Shayegh, J. (2013): Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. - Pharmacogn. Rev. 7(14): 199–212. https://doi.org/10.4103/0973-7847.120524
Ozcan, T. (2007): Characterization of Turkish Quercus L. taxa based on fatty acid compositions of the acorns. - J. Amer. Oil. Chem. Soc. 84(7): 653–662. https://doi.org/10.1007/ s11746-007-1087-8
Ozcan, T. (2013): Accumulation patterns of some seed oil components from wild sources of Turkey. - Nat. Prod. Res. 27(1): 54–60. https://doi.org/10.1080/14786419.2011.650639
Peiretti, P. G., Palmegiano, G. B. and Salamano, G. (2004): Evaluation of the quality and fatty acid content of borage (Borago officinalis L.) during the growth cycle Italian. - J. Food Sci. 16: 177–184.
Podani, J. (2000): Introduction to the exploration of multivariate data. - Backhuys, Leiden, 407 pp.
Riedl, J., Kluender, C., Sans-Piche, F., Heilmeier, H., Altenburger, R. and Schmitt-Jansen, M. (2012): Spatial and temporal variation in metabolic fingerprints of field-growing Myriophyllum spicatum. - Aquat. Bot. 102: 34–43. https://doi.org/10.1016/j. aquabot.2012.03.017
Rasmussen, M. K., Zamaratskaia, G., Andersen, B. and Ekstrand, B. (2012): Dried chicory root modifies the activity and expression of porcine hepatic CYP3A but not 2C- effect of in vitro and in vivo exposure. - Food Chem. Toxicol. 50: 4175–4179. https://doi. org/10.1016/j.fct.2012.08.024
Sampaio, B. L., Edrada-Ebel, R. and Da Costa, F. B. (2016): Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. - Sci. Rep. 6(1): 29265. https://doi.org/10.1038/srep29265
Shao, H., Huang, X., Zhang, Y. and Zhang, C. (2013): Main alkaloids of Peganum harmala L. and their different effects on dicot and monocot crops. - Molecules 18: 2623–2634. https://doi.org/10.3390/molecules18032623
Stastny, M., Schaffner, U. and Elle, E. (2005): Do vigour of introduced populations and escape from specialist herbivores contribute to invasiveness? - J. Ecol. 93: 27–37. https:// doi.org/10.1111/j.1365-2745.2004.00962.x
Swiμcicki, W., Kroc, M. and Kamel, K. A. (2015): Lupins (Lupinus spp.). In: de Ron, A. M. (ed.): Grain legumes. Series Handbook of Plant Breeding. - Springer, New York. https://doi.org/10.1007/978-1-4939-2797-5_6
Trabelsi, H., Cherif, O. A., Sakouhi, F., Villeneuve, P., Renaud, J., Barouh, N., Boukhchina, S. and Mayer, P. (2012): Total lipid content, fatty acids and 4-desmethylsterols accumulation in developing fruit of Pistacia lentiscus L. growing wild in Tunisia. - Food Chem. 131: 434–440. https://doi.org/10.1016/jioodchem.2011.08.083
Veldhoen, N., Ikonomou, M. G. and Helbing, C. C. (2012): Molecular profiling of marine fauna: integration of omics with environmental assessment of the world’s oceans. - Ecotoxicol. Environ. Safety 76: 23–38. https://doi.org/10.1016/j.ecoenv.2011.10.005
Willis, A. J., Memmott, J. and Forrester, R. I. (2000): Is there evidence for the post-invasion evolution of increased size among invasive plant species? - Ecology Letters 3: 275–283. https://doi.org/10.1046/j.1461-0248.2000.00149.x
Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F. and Wang, Q. (2018): Response of plant secondary metabolites to environmental factors. - Molecules 23(4): 762. https://doi. org/10.3390/molecules23040762