Authors:
S. Pandey Department of Bioscience and Biotechnology Banasthali University P. O. Banasthali Vidyapith Rajasthan, 304022, India

Search for other papers by S. Pandey in
Current site
Google Scholar
PubMed
Close
and
A. Alam Department of Bioscience and Biotechnology Banasthali University P. O. Banasthali Vidyapith Rajasthan, 304022, India

Search for other papers by A. Alam in
Current site
Google Scholar
PubMed
Close
Restricted access

Genetic relationships among 24 genotypes of Hyophila involuta collected from five different natural populations of Mount Abu (Rajasthan) is analysed using RAPD and SSR markers. Based on efficiency parameters calculated for each marker system such as polymorphic information content (RAPD = 0.34; SSR = 0.66), marker index (RAPD = 2.78; SSR = 2.62) and resolving power (RAPD = 8.13; SSR = 2.23), the RAPD marker system shows higher values for some indices but microsatellites are more accurately reproducible than RAPD. Moreover, in case of the SSR, the average number of alleles was almost twice compared to RAPD. Mean coefficient of genetic differentiation between populations with RAPD was Gst = 0.269, while with SSR marker was Fst = 0.224. The UPGMA cluster analysis assembled genotypes into two main clusters with diverse levels of sub-clustering within the clusters. Also, the Mantel test showed no significant correlation between geographical and genetic distances. The observed moderately high genetic variability can be explained by efficient spore dispersal. Other factors such as reproductive mode, somatic mutation, continuous propagule recruitment and high degree of intermingling have great impact on the level of genetic variability in moss populations.

  • Alam, A. (2015): Moss flora of India. An updated summary of taxa. – GRIN Verlag, Germany, 194 pp.

  • Agarwal, M., Shrivastava, N. and Padh, H. (2008): Advances in molecular marker tech-niques and their applications in plant sciences. – Plant Cell Rep. 27: 617631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boopathi, M. N. (2013): Genetics mapping and marker assisted selection: basics, practice and benefits. – Springer, India.

  • Britton, E. G. (1904): Hyophila, a new genus to the United States. – Bryologist 7(5): 6971.

  • Buczkowska, K., Sawicki, J., Szczecinska, M., Klama, H., Milewicz, M. and Bączkiewicz, A. B. (2010): Genetic variation in the liverwort Bazzania trilobata inferred from ISSR markers. – J. Bryol. 32: 265274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y. and Graham, S. W. (2011): Inferring the higher-order phylogeny of mosses (Bryo-phyta) and relatives using a large, multigene plastid data set. – Am. J. Bot. 98: 839849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, C. T. (2003): Genetic variation in rare and common plants. – Ann. Rev. Ecol. Evol. Syst. 34: 213237.

  • Cronberg, N. (2002): Colonization dynamics of the clonal moss Hylocomium splendens on islands in a Baltic land uplift area: reproduction, genet distribution and genetic vari-ation. – J. Ecol. 90: 925935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Earl, D. A. and Von-Holdt, B. M. (2012): Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. – Conserv. Genet. Resour. 4: 359361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engh, I. B. (2012): High genetic variation in the boreal forest moss Hylocomium splendens through its distribution range. – Master Thesis, Norwegian University of Science and Technology, 37 pp.

    • Search Google Scholar
    • Export Citation
  • Evanno, G., Regnaut, S. and Goudet, J. (2005): Detecting the number of clusters of indi-viduals using the software Structure: a simulation study. – Mol. Ecol. 14: 26112620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992): Analysis of molecular variance in-ferred from metric distances among DNA haplotypes: application to human mito-chondrial DNA restriction data. – Genetics 131: 479491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frahm, J. P. (2012): The phytogeography of European bryophytes. – Bot. Serbica 36: 2336.

  • Frankham, R., Ballou, J. D. and Briscoe, D. A. (2004): A primer of conservation genetics. – Cambridge University Press, Cambridge.

  • Hutsemékers, V., Risterucci, A. M., Ricca, M., Boles, S., Hardy, O. J., Shaw, A. J. and Van-derpoorten, A. (2008): Identification and characterization of nuclear microsatellite loci in the aquatic moss Platyhypnidium riparioides (Brachytheciaceae). – Mol. Ecol.Resour.8: 11301132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karlin, E. F., Hotchkiss, S. C., Boles, S. B., Stenøien, H. K., Hassel, K., Flatberg, K. I. and Shaw, A. J. (2012): High genetic diversity in a remote island population system: sans sex. – New Phytol. 193: 10881097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, M. and Crow, J. (1964): The number of alleles that can be maintained in a finite population. – Genetics 49: 725738.

  • Kophimai, Y., Peintinger, M., Werth, S., Conejo, C., Scheidegger, C. and Bergamini, A. (2014): Ploidy level, genetic diversity, and differentiation in two closely related mosses, Scorpidium cossonii and S. revolvens (Calliergonaceae). – J. Bryol. 36: 3343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korpelainen, H., Virtanen, V., Kostamo, K. and Karttunen, H. (2008): Molecular evidence shows that the moss Rhytidiadelphus subpinnatus (Hylocomiaceae) is clearly dis-tinct from R. squarrosus. – Mol. Phyl.Evol.48: 372376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., Mishra, P., Singh, S. C. and Sundaresan, V. (2014): Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia ad-hatoda L., a medicinal plant. – Plant Syst. Evol. 300: 14091420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laaka-Lindberg, S., Korpelainen, H. and Pohjamo, M. (2003): Dispersal of asexual prop-agules in bryophytes. – J. Hattori Bot.Lab.93: 319330.

    • Search Google Scholar
    • Export Citation
  • Leonardia, A. A. P., Kumar, P. P. and Tan, B. C. (2006): Development of microsatellite markers for the tropical moss, Acanthorrhynchium papillatum. – Mol. Ecol. Notes 6: 396398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewontin, R. C. (1972): The apportionment of human diversity. – Evol. Biol. 6: 381398.

  • Li, Y., Korol, A., Fahima, T., Bailes, A. and Nevo, E. (2002): Microsatellites: genomic dis-tribution, putative functions and mutational mechanisms: a review. – Mol. Ecol. 11: 24532465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manju, C. N., Martin, K. P., Sreekumar, V. B. and Rajesh, K. P. (2012): Morphological and molecular differentiation of Aerobryopsis eravikulamensis Manju and Rajesh sp. – nov. (Meteoriaceae: Bryophyta) and closely related taxa of the Western Ghats of In-dia. – Bryologist 115: 4250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantel, N. (1967): The detection of disease clustering and a generalized regression ap-proach. –Cancer Res. 27: 209220.

  • McDaniel, S. F. and Shaw, A. J. (2005): Selective sweeps and intercontinental migration in the cosmopolitan moss Ceratodon purpureus (Hedw.) Brid. – Mol. Ecol. 14: 11211132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelamraju, S. and Neeraja, C. N. (2005): Use of anchored (AG) n and (GA) n primers to assess genetic diversity of Indian landraces and varieties of rice. – Curr. Sci. 89: 13711381.

    • Search Google Scholar
    • Export Citation
  • Nei, M. (1973): Analysis of gene diversity in subdivided populations. – Proc. Natl. Acad. Sci. 70: 33213323.

  • Nevo, E., Beiles, A. and Krugman, T. (1988): Natural selection of allozyme polymorphisms: a microgeographic differentiation in wild emmer wheat (Triticum dicoccoides). – Theor. Appl.Genet.75: 529538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padmesh, P., Mukunthakumar, S., Vineesh, P. S., Skaria, R., Kumar, K. H. and Krishnan, P. N. (2012): Exploring wild genetic resources of Musa acuminata Colla distributed in the humid forests of southern Western Ghats of peninsular India using ISSR markers. –Plant Cell Rep. 31: 15911601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, S., Sharma, V. and Alam, A. (2016): Potential of microsatellites markers for the genet-ic analysis of bryophytes. – Not. Sci.Biol.8: 3746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, S., Alam, A., Chakraborty, D. and Sharma, V. (2018): An improved protocol for genomic DNA isolation from bryophyte species. – Proc. Nat. Acad. Sci. India Sect. B 89: 823831. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y. J., Lee, J. K. and Kim, N. S. (2009): Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. – Molecules 14: 45464569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peakall, R. and Smouse, P. E. (2012): GenAlEx 6.5: genetic analysis in Excel. – Population genetic software for teaching and research: an update. – Bioinformatics 28: 25372539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, W., Morganate, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996): The comparison of RFLP, RAPD, AFLP, SSR (microsatellite) markers for germplasm analysis. –Mol. Breed. 2: 225238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, J. K., Stephens, M. and Donnelly, P. (2000): Inference of population structure us-ing multi locus genotype data. – Genetics 155: 945959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provan, J., Soranzo, N., Wilson, N. J., Goldstein, D. B. and Powell, W. A. (1999): Low muta-tion rate for chloroplast microsatellites. – Genetics 153: 943947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricca, M. and Shaw, A. J. (2010): Allopolyploidy and homoploid hybridization in the Sphagnum subsecundum complex (Sphagnaceae: Bryophyta). – Biol. J. Linn. Soc. 99: 135151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Såstad, S. M., Stenøien, H. K. and Flatberg, K. I. (1999): Species delimitation and relation-ships of the Sphagnum recurvum complex (Bryophyta) as revealed by isozyme and RAPD markers. – Syst. Bot. 24: 95107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, A. J. (1991): Ecological genetics, evolutionary constraints and the systematics of bryophytes. In: Cramer, J. (ed.): Advances in bryology. Gebrüder Borntraeger, Berlin, pp. 2974.

    • Search Google Scholar
    • Export Citation
  • Shaw, A. J. (2009): Bryophyte species and speciation. In: Goffinet, B. and Shaw, A. J. (eds): Bryophyte biology. Cambridge University Press, New York, USA, pp. 445485.

    • Search Google Scholar
    • Export Citation
  • Shaw, A. J., Cao, T., Wang, L. S., Flatberg, K. I., Flatberg, B., Shaw, A., Zhou, P., Boles, S. and Terracciano, S. (2008): Genetic variation in three Chinese peat mosses (Sphagnum) based on microsatellite markers, with primer information and analy-sis of ascertainment bias. – Bryologist 111: 271281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skotnicki, M. L., Bargagli, R. and Ninham, J. A. (2002): Genetic diversity in the moss Pohlia nutans on geothermal ground of Mount Rittmann, Victoria Land, Antarctica. – Polar Biol. 25: 771777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoot, E. L. and Taylor, T. N. (1986): Structurally preserved fossil plants from Antarctica II: a Permian moss from the Transarctic Mountains. – Am. J.Bot.73: 16831691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spagnuolo, V., Muscariello, L., Cozzolino, S., Castaldo-Cobianchi, R. and Giordano, S. (2007): Ubiquitous genetic diversity in ISSR markers between and within populations of the asexually producing moss Pleurochaete squarrosa. – Plant Ecol. 188: 91101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sripaoraya, S., Blackhall, N. W., Marchant, J., Power, J. B., Lowe, K. C. and Davey, M. R. (2001): Relationship in pineapple by random amplified polymorphic DNA (RAPD) analysis. – Plant Breed. 120: 265267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenøien, H. K. and Såstad, S. M. (2001): Genetic variability in bryophytes: does mating system really matter?. – J. Bryol. 23: 313318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoneburner, A., Wyatt, R. and Odrzykoski, I. J. (1991): Ecological genetics, evolutionary constraints and the systematics of Bryophytes. – In: Cramer, J. (eds): Advances in bryology. Gebrüder Borntraeger, Berlin, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Travadon, R., Sache, I., Dutech, C. C., Stachowiak, A., Marquer, B. and Bousset, L. (2011): Absence of isolation by distance patterns at the regional scale in the fungal plant path-ogen Leptosphaeria maculans. – Fungal Biol. 115: 649659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Zanten, B. O. and Pócs, T. (1981): Distribution and dispersal of bryophytes. – Adv. Bryol. 1: 479562.

  • Vander-Velde, B. and Bijlsma, R. (2003): Phylogeography of five Polytrichum species within Europe. – Biol. J. Linn. Soc.78: 203213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weeks, A. R., Stoklosa, J. and Hoffmann, A. A. (2016): Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Aus-tralian mammals. – Front. Zool. 13, 31 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, P. J. and Provan, J. (2003): Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. – Proc. Roy. Soc. London, Biol. Sci. 270: 881886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, A. T., Howe, R. W. and Hamrick, J. L. (2000): Genetic diversity and population structure of the serpentine endemic Calystegia collina (Convolvulaceae) in Northern Cali-fornia. – Am. J.Bot.87: 11381146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, S. (1969): Evolution and the genetics of populations II. The theory of gene frequency. – University of Chicago Press, Chicago.

    • Search Google Scholar
    • Export Citation
  • Wyatt, R., Stoneburner, A. and Odrzykoski, I. J. (1989): Bryophyte isozymes: systematic and evolutionary implications. In: Soltis, D. E. and Soltis, P (eds): Isozymes in plant biology. Dioscoride Press, Seattle, pp. 221240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H. and Mao, J. X. (1999): POPGENE 3.2, User-friendly shareware for population genetic analysis. http://ualberta.ca/wfeyeh.

    • Search Google Scholar
    • Export Citation
  • Zargar, S. M., Farhat, S., Mahajan, R., Bhakhri, A. and Sharma, A. (2016): Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean. – Saudi J. Biol.Sci.23: 139149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

 

Senior editors

Managing Editors

Editorial Board

  • Gy. BORBÉLY (Debrecen)
  • A. ČARNY (Ljubljana)
  • A. CSERGŐ (Dublin)
  • B. CZÚCZ (Paris)
  • M. HÖHN (Budapest)
  • K. T. KISS (Budapest)
  • A. KUZEMKO (Uman)
  • Z. LOSOSOVÁ (Brno)
  • I. MÁTHÉ (Szeged)
  • E. MIHALIK (Szeged)
  • S. ORBÁN (Eger)
  • R. PÁL (Butte)
  • Gy. PINKE (Mosonmagyaróvár)
  • T. PÓCS (Eger)
  • K. PRACH (České Budejovice)
  • E. S. RAUSCHERT (Cleveland)
  • E. RUPRECHT (Cluj Napoca)
  • G. SRAMKÓ (Debrecen)
  • A. T. SZABÓ (Veszprém)
  • É. SZŐKE (Budapest)
  • B. TOKARSKA-GUZIK (Katowice)
  • B. TÓTHMÉRÉSZ (Debrecen)
  • P. TÖRÖK (Debrecen)

Botta-Dukát, Zoltán
E-mail: botta-dukat.zoltan@okologia.mta.hu

or

Lőkös, László
E-mail: acta@bot.nhmus.hu
Institute: Botanical Department, Hungarian Natural History Museum
Address: Könyves K. krt. 40. H-1097 Budapest, Hungary

  • Scopus
  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Referativnyi Zhurnal

 

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
24
Scimago
Journal Rank
0.512
Scimago Quartile Score

Ecology, Evolution, Behavior and Systematics (Q2)
Plant Science (Q2)

Scopus  
Scopus
Cite Score
2.4
Scopus
CIte Score Rank
Plant Science 228/487 (53rd PCTL)
Ecology, Evolution, Behavior and Systematics 350/687 (49th PCTL)
Scopus
SNIP
0.854

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
23
Scimago
Journal Rank
0,392
Scimago Quartile Score Plant Science (Q2)
Ecology, Evolution, Behavior and Systematics (Q3)
Scopus  
Scopus
Cite Score
2,5
Scopus
CIte Score Rank
Plant Science 205/482 (Q2)
Ecology, Evolution, Behavior and Systematics 322/687 (Q2)
Scopus
SNIP
1,046

2020  
Scimago
H-index
19
Scimago
Journal Rank
0,417
Scimago
Quartile Score
Plant Science Q2
Ecology, Evolution, Behavior and Systematics Q3
Scopus
Cite Score
155/89=1,7
Scopus
Cite Score Rank
Plant Science 221/445 (Q2)
Ecology, Evolution, Behavior and Systematics 374/647 (Q3)
Scopus
SNIP
0,838
Scopus
Cites
260
Scopus
Documents
22
Days from submission to acceptance 127
Days from acceptance to publication 132
Acceptance
Rate
36%

 

2019  
Scimago
H-index
17
Scimago
Journal Rank
0,404
Scimago
Quartile Score
Plant Science Q2
Ecology, Evolution, Behavior and Systematics Q3
Scopus
Cite Score
164/91=1,8
Scopus
Cite Score Rank
Plant Science 209/431 (Q2)
Ecology, Evolution, Behavior and Systematics 358/629 (Q3)
Scopus
SNIP
0,699
Scopus
Cites
215
Scopus
Documents
23
Acceptance
Rate
30%

 

Acta Botanica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 612 EUR / 740 USD
Print + online subscription: 696 EUR / 844 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Botanica Hungarica
Language English
French
German
Russian
Spanish
Size B5
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-6495 (Print)
ISSN 1588-2578 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 8 0 0
Jul 2023 2 0 0
Aug 2023 12 0 0
Sep 2023 8 0 0
Oct 2023 8 1 0
Nov 2023 10 15 0
Dec 2023 8 0 0