This work presents research materials, the purpose of which is to grow seedlings of coniferous trees in the open field using artificial substrates of mycorrhizal macromycetes in forest nurseries of Central, North and Northeast Kazakhstan. The success of mycorrhiza formation in seedlings Pinus sylvestris and Picea obovata from forest nurseries of Akmola and Karaganda regions, and the survival rate of seedlings from forest nurseries of Akmola, Karaganda and Pavlodar regions of Kazakhstan are analysed. In the future, we want to expand the range of studied species and compare artificially mycorrhized seedlings with naturally mycorrhized species from natural forests. If we compare the survival rate of seedlings in nurseries, the highest in P. sylvestris seedlings in Shaldai is about 78%, low in Novodolenskoe, about 27%, and for P. obovata, on average, 66%. In the future, we want to expand the range of studied species and compare artificially mycorrhized seedlings with naturally mycorrhized species from natural forests.
Adamovich, I. and Shlapakova, S . (2016): Mycorrhiza formation of Pinus sylvestris in stands damaged by Нeterobasidion annosum. –Proc. Karelian Res. Centre Russ. Acad. Sci. 12: 123–125.
Agerer, R . (1987–2008): Colour atlas of ectomycorrhizae.–Einhorn-Verlag, Schwabisch Gmund.
Baizakov, S. B . (2015): Report on preparation of background information materials required for private forestation development in Kazakhstan. – Almaty.
Burke, D. J. , Martin, K. J. , Rygiewicz, P. T. and Topa, M. A . (2005): Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. –Soil Biol. Biochem. 37(9): 1683–1694.
Burtsev, D. S . (2014): Foreign experience of artificial mycorization of forest tree seedlings with closed root system. –Proc. St. Petersb. For. Res. Inst. 1: 47–61.
Chen, W. , Koide, R. T. , Adams, T. S. , DeForest, J. L. , Cheng, L. and Eissenstat, D. M . (2016): Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. –Proc. Nat. Acad. Sci. 113(31): 8741–8746.
Cope, K. R. , Bascaules, A. , Irving, T. B. , Venkateshwaran, M. , Maeda, J. , Garcia, K. , Rush, T. A. , Ma, C. , Labbé, J. , Jawdy, S. , Steigerwald, E. , Setzke, J. , Fung, E. , Schnell, K. G. , Wang, Y. , Schleif, N. , Bücking, H. , Strauss, S. H. , Maillet, F. , Jargeat, P. , Bécard, G. , Puech-Pagès, V. and Ané, J.-M . (2019): The ectomycorrhizal fungus Laccaria bicolor produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize Populus roots.–Plant Cell 31(10): 2386–2410.
Courty, P.-E. , Buée, M. , Diedhiou, A. G. , Frey-Klett, P. , Le Tacon, F. , Rineau, F. , Turpault, M.-P. , Uroz, S. and Garbaye, J . (2010): The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts.–Soil Biol. Biochem 42(5): 679–698.
De Roman, M. , Claveria, V. and Maria De Miguel, A . (2005): A revision of the descriptions of ectomycorrhizas published since 1961. –Mycol. Res. 109(10): 1063–1104.
Eropkin, K. I . (1973): Adsorption capacity of mycorrhizal and non-mycorrhizal pine roots. – In: Plant mycorrhiza. PGPI, Perm.
Garcia, K. , Chasman, D. , Roy, S. and Ané, J.-M . (2017): Physiological responses and gene co-expression network of mycorrhizal roots under K+ deprivation.–Plant Physiol. 173(3): 1811–1823.
Herrera-Martínez, A. , Ruiz-Medrano, R. , Galván-Gordillo, S.V. , Toscano-Morales, R. , Gómez-Silva, L. , Valdés, M. , Hinojosa-Moya, J. and Xoconostle-Cázares, B . (2014): A 2-component system is involved in the early stages of the Pisolithus tinctorius-Pinus greggii symbiosis. –Plant Signal. Behav. 9(5): e28604.
Horton, T. R. and Bruns, T. D . (2001): The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. –Mol. Ecol. 10(8): 1855–1871.
Index Fungorum (2019): Index Fungorum Home Page. – Retrieved from: http://www.index-fungorum.org/
IPNI (2019): International Plant Names Index (IPNI). – Retrieved from: https://www.ipni.org/
Katenin, A. E . (1972): Plant Mikoriz of the North-East of the European part of the USSR. – Science, Leningrad.
Kenzin, I. A . (1985): Formation of root system and mycorrhiza in annual seedlings of ordinary pine, Siberian larch and spruce in the foothills of the Zailiyskiy Alatau. – In: Mycorrhiza and other forms of conservative relations in nature. PGPI, Perm.
Klavina, D. , Pennanen, T. , Gaitnieks, T. , Velmala, S. , Lazdins, A. , Lazdina, D. and Menkis, A . (2016): The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash.–Mycorrhiza 26(2): 153–160.
Long, D. , Liu, J. , Han, Q. , Wang, X. and Huang, J . (2016): Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau, China.–Sci. Rep. 6(1): 24336.
Ma, D. , Zang, S. , Wan, L. and Zhang, D . (2012): Ectomycorrhizal community structure in chronosequences of Pinus densiflora in eastern China. –Afr. J. Microbiol. Res. 6(32): 6204–6209.
Malysheva, V. F. , Malysheva, E. F. , Kovalenko, A. E. , Pimenova, E. A. , Gromyko, M. N. and Bondarchuk, S. N . (2014): Ectomycorrhizal simbionts of Pinus koraiensis in the forests of Central Sikhote-Alin, which have been identified with mycorrhizal root tips rDNA analysis. –Mycol. Phytopathol. 6(48): 32–45.
Menkis, A. , Vasiliauskas, R. , Taylor, A. F. S. , Stenlid, J. and Finlay, R . (2007): Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi. Impact on plant performance and ectomycorrhizal community. –Mycorrhiza 17(4): 337–348.
Meshkov, V. V . (2010): Justification and technology of obtaining the mycorrhizovannogo compost for forest growing and mushrooms for commercial purposes (on the example of the belt pine forests of the Irtysh region. – PhD thesis, Almaty.
Mussayeva, B. , Mokrzycki, T. , Sarsekova, D. and Osserkhan, B . (2019): Influence of the disturbance depth on the number of Pinus sylvestris L. pest species and their abundance in the forests of north-eastern Kazakhstan. –Sylwan 163(12): 1035–1042.
Qian, X. M. , Kottke, I. and Oberwinkler, F . (1998): Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand.–Plant and Soil 199(1): 99–109.
Rúa, M. A. , Wilson, E. C. , Steele, S. , Munters, A. R. , Hoeksema, J. D. and Frank, A. C . (2016): Associations between ectomycorrhizal fungi and bacterial needle endophytes in Pinus radiata: implications for biotic selection of microbial communities. –Front. Micro-biol. 7: 399.
Sakakibara, S. M. , Jones, M. D. , Gillespie, M. , Hagerman, S. M. , Forrest, M. E. , Simard, S. W. and Durall, D. M . (2002): A comparison of ectomycorrhiza identification based on morphotyping and PCR-RFLP analysis. –Mycol. Res. 106(8): 868–878.
Sarsekova, D. N. , Osserkhan, B. and Sirman, D. Y . (2019): Main growth biometric parameters of Picea obovata and Pinus sylvestris in preplanting effect of mycorrhizogenic substrates on the root system. –3i: intellect, idea, innovation (Multidisc. Sci. J. Kostanay State University Named after A. Baitursynova) 3: 52–58.
Savelyev, L. and Kikeeva, A . (2017): The reaction of ectomycorrhiza Pinus sylvestris on aerial technogenic pollution of soil lead in an urban environment. –Proc. Karelian Res. Centre Russ. Acad. Sci. 9: 73–83.
Selivanov, I. A . (1981): Mikosimbiotrophism as a form of conservative relations in vegetation cover of the Soviet Union. – Science, Moscow.
Shubin, V. I . (1973): Mycotrophy of tree species, its significance in forest cultivation in the taiga zone. – Science, Leningrad.
Sizonenko, T. A. , Shadrin, D. M. and Pylina, Y. I . (2017): Determination of morphotypes and vital activity of ectomycorrhiza Siberian spruce by fluorescence and rDNA analysis. –Bull. Komi Sci. Center, Ural Branch Russ. Acad. Sci. 2(30): 37–44.
Sweet, M. J. and Singleton, I . (2015): Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. –J. Nanopart. Res. 17(11): 448.
Toju, H. and Sato, H . (2018): Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest. –Front. Microbiol. 9: 433.
Trocha, L. K. , Kałucka, I. , Stasińska, M. , Nowak, W. , Dabert, M. , Leski, T. , Rudawska, M. and Oleksyn, J . (2012): Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.–Mycorrhiza 22(2): 121–134.
Vaishlya, O. B. , Kudashova, N. N. , Gashkov, S. I. , Karbysheva, K. S. and Bakhtinskaya, I. A . (2017): First list of macromycetes forming ectomycorrhizas in cedar and pine forests of Tomsk region of West Siberia. –Int. J. Environ. Stud. 74(5): 752–770.
Veselkin, D. V . (2006): Functional value of mycorrhiza formation in annual pine and spruce seedlings in forest nurseries.–Vestnik Orenburg State University. 1: 12–18.
Wang, L. , Otgonsuren, B. and Godbold, D. L . (2017): Mycorrhizas and soil ecosystem function of co-existing woody vegetation islands at the alpine tree line.–Plant and Soil 411(1–2): 467–481.
Wurzburger, N. , Bidartondo, M. I. and Bledsoe, C. S . (2001): Characterization of Pinus ectomycorrhizas from mixed conifer and pygmy forests using morphotyping and molecular methods. –Can. J. Bot. 79(10): 1211–1216.
Zhang, X. , Li, X. , Wu, C. , Ye, L. , Kang, Z. and Zhang, X . (2019): Exogenous nitric oxide and phosphorus stress affect the mycorrhization, plant growth, and associated microbes of Carya illinoinensis seedlings colonized by Tuber indicum. –Front. Microbiol. 10: 2634.