View More View Less
  • 1 University of Debrecen, Debrecen, Hungary
  • | 2 University of Debrecen, Debrecen, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

The glomerular filtration barrier is a highly specialized tri-layer structure with unique functional properties. Podocyte dysfunction and cytoskeletal disorganization leads to disruption of the slit diaphragma, and proteinuria. Inflammatory diseases involving the kidney as well as inherited podocytopathies or diabetic nephropathy cause injury of the podocyte network. Focal segmental glomerulosclerosis (FSGS) is a pathologic entity that is a common cause of nephrotic syndrome with severe proteinuria in both adults and children. Several causative genes have been identified in the pathogenesis of FSGS. Mutations of the transient receptor potential canonical-6 (TRPC6), a non-selective cation channel that is directly activated by diacylglycerol (DAG), cause a particularly aggressive form of FSGS. Angiotensin II, acting through its AT1 receptor, plays a critical role in generation of proteinuria and progression of kidney injury in a number of kidney diseases, including FSGS. Mounting evidence suggest the central role of TRPC6 and perhaps other TRPC channels in the pathogenesis of FSGS as well as of acquired forms of proteinuria such as diabetic nephropathy or hypertension. Identification of signaling pathways downstream of TRPC6 may provide novel targets for the treatment of proteinuria and prevent progression of podocyte injury.

  • 1.

    Agrawal V, Marinescu V, Agarwal M, Mc Cullough PA: Cardiovascular implications of proteinuria: an indicator of chronic kidney disease. Nat. Rev. Cardiol.. 6, 301311 (2009)

    • Search Google Scholar
    • Export Citation
  • 2.

    Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P: Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat. Cell Biol. 8, 485491 (2006)

    • Search Google Scholar
    • Export Citation
  • 3.

    Benoit G, Machuca E, Nevo F, Gribouval O, Lepage D, Antignac C: Analysis of recessive CD2AP and ACTN4 mutations in steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 25, 445451 (2010)

    • Search Google Scholar
    • Export Citation
  • 4.

    Bensman A, Niaudet P: Non-immunologic mechanisms of calcineurin inhibitors explain its antiproteinuric effects in genetic glomerulopathies. Pediatr. Nephrol. 25, 11971199 (2010)

    • Search Google Scholar
    • Export Citation
  • 5.

    Bousquet SM, Monet M, Boulay G: Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition. J. Biol. Chem. 285, 4053440543 (2010)

    • Search Google Scholar
    • Export Citation
  • 6.

    Casas JP, Chua W, Loukogeorgakis S, Vallance P, Smeeth L, Hingorani AD, MacAllister RJ: Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis Lancet. 366, 20262033 (2005)

    • Search Google Scholar
    • Export Citation
  • 7.

    Catalano C, Muscelli E, Quiñones Galvan A, Baldi S, Masoni A, Gibb I, Torffvit O, Seghieri G, Ferrannini E: Effect of insulin on systemic and renal handling of albumin in nondiabetic and NIDDM subjects Diabetes. 46, 868875 (1997)

    • Search Google Scholar
    • Export Citation
  • 8.

    Chen S, He FF, Wang H, Fang Z, Shao N, Tian XJ, Liu JS, Zhu ZH, Wang YM, Wang S, Huang K, Zhang C: Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell Calcium. 50, 523529 (2011)

    • Search Google Scholar
    • Export Citation
  • 9.

    Clapham DE, Nilius B, Owsianik G (2012): Transient receptor potential channels. IUPHAR database (IUPHARDB). http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyld=78.

    • Search Google Scholar
    • Export Citation
  • 10.

    Clapham DE: TRP channels as cellular sensors. Nature. 426, 517524 (2003)

  • 11.

    Crabtree GR: Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 276, 23132316 (2001)

  • 12.

    Damann N, Voets T, Nilius B: TRPs in our senses. Curr. Biol. 18, R880R889 (2008)

  • 13.

    Daskalakis N, Winn MP: Focal and segmental glomerulosclerosis. Cell. Mol. Life Sci. 63, 25062511 (2006)

  • 14.

    Dietrich A, Chubanov V, Gudermann T: Renal TRPathies. J. Am. Soc. Nephrol. 21, 736744 (2010)

  • 15.

    Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P, Pichler R, Griffin S, Couser WG, Shankland SJ: Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int. 65, 3039 (2004)

    • Search Google Scholar
    • Export Citation
  • 16.

    Durvasula RV, Shankland SJ: Activation of a local renin angiotensin system in podocytes by glucose. Am. J. Physiol. Renal. Physiol. 294, F830F839 (2008)

    • Search Google Scholar
    • Export Citation
  • 17.

    El Hindi S, Reiser J: TRPC channel modulation in podocytes-inching toward novel treatments for glomerular disease. Pediatr. Nephrol. 26, 10571064 (2011)

    • Search Google Scholar
    • Export Citation
  • 18.

    Endlich N, Endlich K: Stretch, tension and adhesion –adaptive mechanisms of the actin cytoskeleton in podocytes. Eur. J. Cell Biol. 85, 229234 (2006)

    • Search Google Scholar
    • Export Citation
  • 19.

    Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K: Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol. 12, 413422 (2001)

    • Search Google Scholar
    • Export Citation
  • 20.

    Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P: Actin up: Regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428437 (2007)

    • Search Google Scholar
    • Export Citation
  • 21.

    Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P: The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931938 (2008)

    • Search Google Scholar
    • Export Citation
  • 22.

    Flannery PJ, Spurney RF: Transactivation of the epidermal growth factor receptor by angiotensin IIin glomerular podocytes. Nephron Exp. Nephrol. 103, e109e118 (2006)

    • Search Google Scholar
    • Export Citation
  • 23.

    Gloy J, Henger A, Fischer KG, Nitschke R, Mundel P, Bleich M, Schollmeyer P, Greger R, Pavenstädt H: Angiotensin IIdepolarizes podocytes in the intact glomerulus of the rat. J. Clin. Invest. 99, 27722781 (1997)

    • Search Google Scholar
    • Export Citation
  • 24.

    Greka A, Mundel P: Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J. Am. Soc. Nephrol. 22, 19691980 (2011)

  • 25.

    Gudermann T: A new TRP to kidney disease. Nat. Genet. 37, 663664 (2005)

  • 26.

    Haas M, Spargo BH, Coventry S: Increasing incidence of focal-segmental glomerulosclerosis among adult nephropathies: a 20-year renal biopsy study. Am. J. Kidney Dis. 26, 740750 (1995)

    • Search Google Scholar
    • Export Citation
  • 27.

    Hauser PV, Pippin JW, Kaiser C, Krofft RD, Brinkkoetter PT, Hudkins KL, Kerjaschki D, Reiser J, Alpers CE, Shankland SJ: Novel siRNA delivery system to target podocytes in vivo. PLoS One. 5, e9463 (2010)

    • Search Google Scholar
    • Export Citation
  • 28.

    Hildebrandt F, Heeringa SF: Specific podocin mutations determine age of onset of nephrotic syndrome all the way into adult life. Kidney Int. 75, 669671 (2009)

    • Search Google Scholar
    • Export Citation
  • 29.

    Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F: Arbeitsgemeinschaft für Paediatrische Nephrologie Study Group: Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 119, e907919 (2007)

    • Search Google Scholar
    • Export Citation
  • 30.

    Hoffmann S, Podlich D, Hähnel B, Kriz W, Gretz N: Angiotensin IItype 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J. Am. Soc. Nephrol. 15, 14751487 (2004)

    • Search Google Scholar
    • Export Citation
  • 31.

    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G: Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 397, 259263 (1999)

    • Search Google Scholar
    • Export Citation
  • 32.

    Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W: Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int. 69, 105113 (2006)

    • Search Google Scholar
    • Export Citation
  • 33.

    Hwang JH, Han SS, Huh W, Park SK, Joo DJ, Kim MS, Kim YS, Min SI, Ha J, Kim SJ, Kim S, Kim YS: Outcome of kidney allograft in patients with adulthood-onset focal segmental glomerulosclerosis: comparison with childhood-onset FSGS. Nephrol. Dial. Transplant. 27, 25592565 (2012)

    • Search Google Scholar
    • Export Citation
  • 34.

    Inagami T, Eguchi S, Numaguchi K, Motley ED, Tang H, Matsumoto T, Yamakawa T: Cross-talk between angiotensin IIreceptors and the tyrosine kinases and phosphatases. J. Am. Soc. Nephrol 10 Suppl. 11, S57S61 (1999)

    • Search Google Scholar
    • Export Citation
  • 35.

    Jauregui A, Mintz DH, Mundel P, Fornoni A: Role of altered insulin signaling pathways in the pathogenesis of podocyte malfunction and microalbuminuria. Curr. Opin. Nephrol. Hypertens. 18, 539545 (2009)

    • Search Google Scholar
    • Export Citation
  • 36.

    Jiang L, Ding J, Tsai H, Li L, Feng Q, Miao J, Fan Q: Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp. Biol. Med (Maywood). 236, 184193 (2011)

    • Search Google Scholar
    • Export Citation
  • 37.

    Kanda S, Harita Y, Shibagaki Y, Sekine T, Igarashi T, Inoue T, Hattori S: Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol. Biol. Cell. 22, 18241835 (2011)

    • Search Google Scholar
    • Export Citation
  • 38.

    Kerti A, Csohány R, Szabó A, Arkossy O, Sallay P, Moriniére V, Vega-Warner V, Nyíro G, Lakatos O, Szabó T, Lipska BS, Schaefer F, Antignac C, Reusz G, Tulassay T, Tory K: NPHS2 p.V290M mutation in late-onset steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 28, 751757 (2013)

    • Search Google Scholar
    • Export Citation
  • 39.

    Kuipers AJ, Middelbeek J, van Leeuwen FN: Mechanoregulation of cytoskeletal dynamics by TRP channels. Eur. J. Cell Biol. 91, 834846 (2012)

    • Search Google Scholar
    • Export Citation
  • 40.

    Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN: TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 116, 31143126 (2006)

    • Search Google Scholar
    • Export Citation
  • 41.

    Langham RG, Kelly DJ, Cox AJ, Thomson NM, Holthöfer H, Zaoui P, Pinel N, Cordonnier DJ, Gilbert RE: Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia. 45, 15721576 (2002)

    • Search Google Scholar
    • Export Citation
  • 42.

    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 14561462 (1993)

    • Search Google Scholar
    • Export Citation
  • 43.

    Li SZ, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, Chen F: Calcineurin-NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress. Am. J. Physiol. Cell Physiol. 292, C16061616 (2007)

    • Search Google Scholar
    • Export Citation
  • 44.

    Li Z, Xu J, Xu P, Liu S, Yang Z: Wnt/ß-catenin signalling pathway mediates high glucose induced cell injury through activation of TRPC6 in podocytes. Cell Prolif. 46, 7685 (2013)

    • Search Google Scholar
    • Export Citation
  • 45.

    Mathieson PW: The podocyte as a target for therapies –new and old. Nat. Rev. Nephrol. 8, 5256 (2011)

  • 46.

    Mifsud SA, Allen TJ, Bertram JF, Hulthen UL, Kelly DJ, Cooper ME, Wilkinson-Berka JL, Gilbert RE: Podocyte foot process broadening in experimental diabetic nephropathy: amelioration with renin-angiotensin blockade. Diabetologia. 44, 878882 (2001)

    • Search Google Scholar
    • Export Citation
  • 47.

    Mogensen CE: Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N. Engl. J. Med. 310, 356360 (1984)

    • Search Google Scholar
    • Export Citation
  • 48.

    Möller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, Henger A, Kretzler M, Shankland SJ, Reiser J: Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol. 18, 2936 (2007)

    • Search Google Scholar
    • Export Citation
  • 49.

    Mukerji N, Damodaran TV, Winn MP: TRPC6 and FSGS: the latest TRP channelopathy. Biochim. Biophys. Acta. 1772, 859868 (2007)

  • 50.

    Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD: Pivotal role of the renin/prorenin receptor in angiotensin IIproduction and cellular responses to renin. J. Clin. Invest. 109, 14171427 (2002)

    • Search Google Scholar
    • Export Citation
  • 51.

    Nijenhuis T, Sloan AJ, Hoenderop JG, Flesche J, van Goor H, Kistler AD, Bakker M, Bindels RJ, de Boer RA, Möller CC, Hamming I, Navis G, Wetzels JF, Berden JH, Reiser J, Faul C, van der Vlag J: Angiotensin IIcontributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am. J. Pathol. 179, 17191732 (2011)

    • Search Google Scholar
    • Export Citation
  • 52.

    Nilius B, Szallasi A: Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol. Rev. 66, 676814 (2014)

    • Search Google Scholar
    • Export Citation
  • 53.

    Nitschke R, Henger A, Ricken S, Gloy J, Müller V, Greger R, Pavenstädt H: Angiotensin IIincreases the intracellular calcium activity in podocytes of the intact glomerulus. Kidney Int. 57, 4149 (2000)

    • Search Google Scholar
    • Export Citation
  • 54.

    Oláh A, Szöllosi AG, Bíró T: The channel physiology of the skin. Rev. Physiol. Biochem. Pharmacol. 163, 65131 (2012)

  • 55.

    Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H: TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 25, 53055316 (2006)

    • Search Google Scholar
    • Export Citation
  • 56.

    Ovunc B, Ashraf S, Vega-Warner V, Bockenhauer D, Elshakhs NA, Joseph M, Hildebrandt F, Gesellschaft für Pädiatrische Nephrologie (GPN) Study Group: Mutation analysis of NPHS1 in a worldwide cohort of congenital nephrotic syndrome patients. Nephron Clin. Pract. 120, c139146 (2012)

    • Search Google Scholar
    • Export Citation
  • 57.

    Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L, Meyer TW: Podocyte loss and progressive glomerular injury in type IIdiabetes. J. Clin. Invest. 99, 342348 (1997)

    • Search Google Scholar
    • Export Citation
  • 58.

    Ramsey IS, Delling M, Clapham DE: An introduction to TRP channels. Annu. Rev. Physiol. 68, 619647 (2006)

  • 59.

    Reddy GR, Kotlyarevska K, Ransom RF, Menon RK: The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy? Curr. Opin. Nephrol. Hypertens. 17, 3236 (2008)

    • Search Google Scholar
    • Export Citation
  • 60.

    Reiser J, Gupta V, Kistler AD: Toward the development of podocyte-specific drugs. Kidney Int. 77, 662668 (2010)

  • 61.

    Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR: TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739744 (2005)

    • Search Google Scholar
    • Export Citation
  • 62.

    Saleem MA: New developments in steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 28, 699709 (2013)

  • 63.

    Santín S, García-Maset R, Ruíz P, Giménez I, Zamora I, Peña A, Madrid A, Camacho JA, Fraga G, Sánchez-Moreno A, Cobo MA, Bernis C, Ortiz A, de Pablos AL, Pintos G, Justa ML, Hidalgo-Barquero E, Fernández-Llama P, Ballarín J, Ars E, Torra R: FSGS Spanish Study Group: Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int. 76, 12681276 (2009)

    • Search Google Scholar
    • Export Citation
  • 64.

    Schlöndorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR: TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am. J. Physiol. Cell Physiol. 296, C558569 (2009)

    • Search Google Scholar
    • Export Citation
  • 65.

    Somlo S, Mundel P: Getting a foothold in nephrotic syndrome. Nat. Genet. 24, 333335 (2000)

  • 66.

    Steffes MW, Schmidt D, McCrery R, Basgen JM: International Diabetic Nephropathy Study Group: Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 59, 21042113 (2001)

    • Search Google Scholar
    • Export Citation
  • 67.

    Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS: The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3, 4, 5-trisphosphate-sensitive calcium entry system. Biochemistry. 43, 1170111708 (2004)

    • Search Google Scholar
    • Export Citation
  • 68.

    Vincenti F, Ghiggeri GM: New insights into the pathogenesis and the therapy of recurrent focal glomerulosclerosis. Am. J. Transplant. 5, 11791185 (2005)

    • Search Google Scholar
    • Export Citation
  • 69.

    Vriens J, Appendino G, Nilius B: Pharmacology of vanilloid transient receptor potential cation channels. Mol. Pharmacol. 75, 12621279 (2009)

    • Search Google Scholar
    • Export Citation
  • 70.

    Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR, Liapis H, Miner JH, Chen F: Activation of NFAT signaling in podocytes causes glomerulosclerosis. J. Am. Soc. Nephrol. 21, 16571666 (2010)

    • Search Google Scholar
    • Export Citation
  • 71.

    Weins A, Kenlan P, Herbert S, Le TC, Villegas I, Kaplan BS, Appel GB, Pollak MR: Mutational and biological analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 16, 36943701 (2005)

    • Search Google Scholar
    • Export Citation
  • 72.

    White KE, Bilous RW: Diabiopsies Study Group: Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol. Dial. Transplant. 19, 14371440 (2004)

    • Search Google Scholar
    • Export Citation
  • 73.

    Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB: A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 308, 18011804 (2005)

    • Search Google Scholar
    • Export Citation
  • 74.

    Xu ZG, Yoo TH, Ryu DR, Cheon Park H, Ha SK, Han DS, Adler SG, Natarajan R, Kang SW: Angiotensin IIreceptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int. 67, 944952 (2005)

    • Search Google Scholar
    • Export Citation
  • 75.

    Yoo TH, Li JJ, Kim JJ, Jung DS, Kwak SJ, Ryu DR, Choi HY, Kim JS, Kim HJ, Han SH, Lee JE, Han DS, Kang SW: Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int. 71, 10191027 (2007)

    • Search Google Scholar
    • Export Citation
  • 76.

    Zhang B, Shi W: Is the antiproteinuric effect of cyclosporine a independent of its immunosuppressive function in T cells? Int. J. Nephrol. 2012, 809456 (2012)

    • Search Google Scholar
    • Export Citation
  • 77.

    Zhang H, Ding J, Liu S: TRPC6 up-regulation in Ang II-induced podocyte apoptosis might result from ERK activation and NF-kappaB translocation. Exp. Biol. Med. (Maywood). 234, 10291036 (2009)

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Senior editors

Editor(s)-in-Chief: Rosivall, László

Honorary Editor(s)-in-Chief): Monos, Emil

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

      Benedek, György (Szeged)
      Benyó, Zoltán (Budapest)
      Boros, Mihály (Szeged)
      Chernoch, László (Debrecen)
      Détári, László (Budapest)
      Hamar, János (Budapest)
      Hantos, Zoltán (Szeged)
      Hunyady, László (Budapest)
      Imre, Sándor (Debrecen)
      Jancsó, Gábor (Szeged)
      Karádi, Zoltán (Pécs)
      Kovács, László (Debrecen)
      Palkovits, Miklós (Budapest)
      Papp, Gyula (Szeged)
      Pavlik, Gábor (Budapest)
      Spät, András (Budapest)
      Szabó, Gyula (Szeged)
      Szelényi, Zoltán (Pécs)
      Szolcsányi, János (Pécs)
      Szollár, Lajos (Budapest)
      Szücs, Géza (Debrecen)
      Telegdy, Gyula (Szeged)
      Toldi, József (Szeged)
      Tósaki, Árpád (Debrecen)

International Editorial Board

      R. Bauer (Jena)
      W. Benjelloun (Rabat)
      A. W. Cowley Jr. (Milwaukee)
      D. Djuric (Belgrade)
      C. Fry (London)
      S. Greenwald (London)
      O. Hänninen (Kuopio)
      H. G. Hinghofer-Szalkay (Graz)
      Th. Kenner (Graz)
      Gy. Kunos (Richmond)
      M. Mahmoudian (Tehran)
      T. Mano (Seki, Gifu)
      G. Navar (New Orleans)
      H. Nishino (Nagoya)
      O. Petersen (Liverpool)
      U. Pohl (Münich)
      R. S. Reneman (Maastricht)
      A. Romanovsky (Phoenix)
      G. M. Rubanyi (Richmond)
      T. Sakata (Oita)
      A. Siddiqui (Karachi)
      Cs. Szabo (Beverly)
      E. Vicaut (Paris)
      N. Westerhof (Amsterdam)
      L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Physiologica Hungarica
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: aph@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index Expanded
  • SCOPUS

 

Acta Physiologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0231-424X (Print)
ISSN 1588-2683 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 37 0 0
Mar 2021 18 0 0
Apr 2021 5 0 0
May 2021 9 0 0
Jun 2021 12 0 0
Jul 2021 8 1 2
Aug 2021 0 0 0