View More View Less
  • 1 Catholic University of Murcia, Los Jerónimos Road 135, Guadalupe 30107, Murcia, Spain
  • | 2 Laboratory of Physical Performance and Readaptation Injuries, Toledo, Spain
  • | 3 European University of Madrid, Madrid, Spain
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

The aim of the present research was to analyze modifications on hematological and aerobic performance parameters after a 7-week intermittent hypoxia training (IHT) program. Eighteen male trained triathletes were divided in two groups: an intermittent hypoxia training group (IHTG: n: 9; 26.0 ± 6.7 years; 173.3 ± 5.9 cm; 66.4 ± 5.9 kg; VO2max: 59.5 ± 5.0 ml/kg/min) that conducted a normoxic training plus an IHT and a control group (CG: n: 9; 29.3 ± 6.8 years; 174.9 ± 4.6 cm; 59.7 ± 6.8 kg; VO2max: 58.9 ± 4.5 ml/kg/min) that performed only a normoxic training. Training process was standardized across the two groups. The IHT program consisted of two 60-min sessions per week at intensities over the anaerobic threshold and atmospheric conditions between 14.5 and 15% FiO2. Before and after the 7-week training, aerobic performance in an incremental running test and hematological parameters were analyzed. After this training program, the IHTG showed higher hemoglobin and erythrocytes (p < 0.05) values than in the CG. In terms of physiological and performance variables, between the two groups no changes were found. The addition of an IHT program to normoxic training caused an improvement in hematological parameters but aerobic performance and physiological variables compared to similar training under normoxic conditions did not increase.

  • 1.

    Banfi G, Lundby C, Robach P, Lippi G: Seasonal variations of haematological parameters in athletes. Eur. J. Appl. Physiol. 111, 916 (2011)

    • Search Google Scholar
    • Export Citation
  • 2.

    Banister EW (1991): Modeling elite athletic performance. In: Physiological Testing of Elite Athletes, eds Green H, McDougal J, Wenger H, Champaign, Human Kinetics, pp. 403424

    • Search Google Scholar
    • Export Citation
  • 3.

    Carig N, Walsh C, Martin D, Woolford S, Borudon P, Stanef T, Savage B (2000): Protocols for the Physiological Assessment of High-Performance Track, Road and Mountain Cyclist. In: Physiological Test for Elite Athletes, editors: Gore C, Champaign, Human Kinetics, pp. 258277

    • Search Google Scholar
    • Export Citation
  • 4.

    Clemente-Suárez VJ, González-Ravé JM, Navarro-Valdivielso F: Short-term periodized aerobic training does not attenuate strength capacity or jump performance in recreational endurance athletes. Acta Physiol. Hung. 101, 112 (2014)

    • Search Google Scholar
    • Export Citation
  • 5.

    Czuba M, Waskiewicz Z, Zajac A, Poprzecki S, Cholewa J, Roczniok, R: The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J. Sport Sci. Med. 10, 175183 (2011)

    • Search Google Scholar
    • Export Citation
  • 6.

    Czuba M, Zajac A, Maszcyk A, Roczniok R, Poprzecki S, Garbaciak W, Zajac T: The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players. J. Hum. Kinet. 39, 103114 (2013)

    • Search Google Scholar
    • Export Citation
  • 7.

    Dufour S, Ponsot E, Zoll J, Doutreleau S, Geny B, Lampert E, Billat V: Exercise training in normobaric hypoxia in endurance runners I. Improvement in aerobic performance capacity. J. Appl. Physiol. 100, 12381248 (2006)

    • Search Google Scholar
    • Export Citation
  • 8.

    Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA. Bauer C: Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J. Appl. Physiol. 66, 17851788 (1989)

    • Search Google Scholar
    • Export Citation
  • 9.

    Gomez-Gallego F, Santiago C, Gonzalez-Freire M, Muniesa CA, Fernández Del Valle M, Pérez M, Lucía A: Endurance performance: genes or gene combinations? Int. J. Sports Med. 30, 6672 (2009)

    • Search Google Scholar
    • Export Citation
  • 10.

    Gore CJ, Hahn AG, Aughey R, Martin D, Ashenden MJ, Clark SA: Live high-train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol. Scand. 173, 275286 (2001)

    • Search Google Scholar
    • Export Citation
  • 11.

    Hamlin MJ, Marshall HC, Hellemans J, Ainslie N: Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: a preliminary report. Appl. Physiol. Nut. Metabol. 35, 548559 (2010)

    • Search Google Scholar
    • Export Citation
  • 12.

    Hendriksen IJ, Meeuwsen T: The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. Eur. J. Appl. Physiol. 88, 396403 (2003)

    • Search Google Scholar
    • Export Citation
  • 13.

    Howley ET, Basseet T, Welch HG: Criteria for maximal oxygen uptake: review and commentary. Med. Sci. Sport. Exerc. 27, 12921301 (1995)

    • Search Google Scholar
    • Export Citation
  • 14.

    Levine B, Stray-Gundersen J: “Living high-training low”: effect of moderate-altitude acclimatization with lowaltitude training on performance. J. Appl. Physiol. 83, 102112 (1997)

    • Search Google Scholar
    • Export Citation
  • 15.

    Levine BD, Stray-Gundersen J: Point: positive effects of intermittent hypoxia (live high: train low) on exercise performance are mediated primarily by augmented red cell volume. J. Appl. Physiol. 99, 20532055 (2005)

    • Search Google Scholar
    • Export Citation
  • 16.

    MacDougall JD, Hicks L, MacDonald R, McKelvie RS, Geen HJ, Smith, KM: Muscle performance and enzymatic adaptations to sprint interval training. J. Appl. Physiol. 84, 21382142 (1998)

    • Search Google Scholar
    • Export Citation
  • 17.

    Meeuwsen T, Hendriksen IJ, Holewijn M: Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur. J. Appl. Physiol. 84, 283290 (2001)

    • Search Google Scholar
    • Export Citation
  • 18.

    Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP: Combining hypoxic methods for peak performance. Sports Med. 40, 125 (2010)

  • 19.

    Morkeberg JS, Belhage B, Damsgaard R: Changes in blood values in elite cyclist. Int. J. Sports Med. 30, 130138 (2009)

  • 20.

    Morton JP, Cable NT: Effects of intermittent hypoxic training on aerobic & anaerobic performance. Ergonomics 48, 15351546 (2005)

  • 21.

    Puype J, Van Proeyen K, Raymarkers JM, Delcicque L, Hespel P: Sprint Interval Training in hypoxia stimulates glycolytic enzyme activities. Med. Sci. Sports Exerc. 45, 21662174 (2013)

    • Search Google Scholar
    • Export Citation
  • 22.

    Rodriguez FA, Casas H, Casas M: Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med. Sci. Sports Exerc. 31, 264268 (1999)

    • Search Google Scholar
    • Export Citation
  • 23.

    Roels B, Millet GP, Marcoux CJ, Coste O, Bentley DJ, Candau RB: Effects of hypoxic interval training on cycling performance. Med. Sci. Sports Exerc. 37, 138146 (2005)

    • Search Google Scholar
    • Export Citation
  • 24.

    Roels B, Bentley DJ, Coste O, Mercier J, Millet GP: Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur. J. Appl. Physiol. 101, 359368 (2007)

    • Search Google Scholar
    • Export Citation
  • 25.

    Sanchis-Gomar F, Martinez-Bello VE, Domenech E, Nascimento AL, Pallardo FV, Gomez-Cabrera MC, Vina J: Effect of intermittent hypoxia on hematological parameters after recombinant human erythropoietin administration. Eur. J. Appl. Physiol. 107, 429436 (2009)

    • Search Google Scholar
    • Export Citation
  • 26.

    Skinner J, McLellan T: The transition from aerobic to anaerobic metabolism. Res. Quart. Exerc. Sport 51, 234248 (1980)

  • 27.

    Truijens MJ, Toussaint HM., Dow J, Levine BD: Effect of high-intensity hypoxic training on sea-level swimming performances. J. Appl. Physiol. 94, 733743 (2003)

    • Search Google Scholar
    • Export Citation
  • 28.

    Vallier JM, Chateaou P, Guezennec CY: Effects of physical training in a hypobaric chamber on the physical performance of competitive triathletes. Eur. J. Appl. Physiol. Occup. Physiol. 73, 471478 (1996)

    • Search Google Scholar
    • Export Citation
  • 29.

    Wilber RL: Application of altitude/hypoxic training by elite athletes. J. Hum. Sports Exer. 6, 112 (2011)

  • 30.

    Wood MR, Dowson MN, Hopkins WG: Running performance after adaptation to acutely intermittent hypoxia. Eur. J. Appl. Physiol. 6, 163172 (2011)

    • Search Google Scholar
    • Export Citation
  • 31.

    Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura R, Vogt M, Fluck M: Exercise training in normobaric hypoxia in endurance runners III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 100, 12581266 (2006)

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Senior editors

Editor(s)-in-Chief: Rosivall, László

Honorary Editor(s)-in-Chief): Monos, Emil

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

    1. Benedek, György (Szeged)
    1. Benyó, Zoltán (Budapest)
    1. Boros, Mihály (Szeged)
    1. Chernoch, László (Debrecen)
    1. Détári, László (Budapest)
    1. Hamar, János (Budapest)
    1. Hantos, Zoltán (Szeged)
    1. Hunyady, László (Budapest)
    1. Imre, Sándor (Debrecen)
    1. Jancsó, Gábor (Szeged)
    1. Karádi, Zoltán (Pécs)
    1. Kovács, László (Debrecen)
    1. Palkovits, Miklós (Budapest)
    1. Papp, Gyula (Szeged)
    1. Pavlik, Gábor (Budapest)
    1. Spät, András (Budapest)
    1. Szabó, Gyula (Szeged)
    1. Szelényi, Zoltán (Pécs)
    1. Szolcsányi, János (Pécs)
    1. Szollár, Lajos (Budapest)
    1. Szücs, Géza (Debrecen)
    1. Telegdy, Gyula (Szeged)
    1. Toldi, József (Szeged)
    1. Tósaki, Árpád (Debrecen)

International Editorial Board

    1. R. Bauer (Jena)
    1. W. Benjelloun (Rabat)
    1. A. W. Cowley Jr. (Milwaukee)
    1. D. Djuric (Belgrade)
    1. C. Fry (London)
    1. S. Greenwald (London)
    1. O. Hänninen (Kuopio)
    1. H. G. Hinghofer-Szalkay (Graz)
    1. Th. Kenner (Graz)
    1. Gy. Kunos (Richmond)
    1. M. Mahmoudian (Tehran)
    1. T. Mano (Seki, Gifu)
    1. G. Navar (New Orleans)
    1. H. Nishino (Nagoya)
    1. O. Petersen (Liverpool)
    1. U. Pohl (Münich)
    1. R. S. Reneman (Maastricht)
    1. A. Romanovsky (Phoenix)
    1. G. M. Rubanyi (Richmond)
    1. T. Sakata (Oita)
    1. A. Siddiqui (Karachi)
    1. Cs. Szabo (Beverly)
    1. E. Vicaut (Paris)
    1. N. Westerhof (Amsterdam)
    1. L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Physiologica Hungarica
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index Expanded


Acta Physiologica Hungarica
Language English
Year of
changed title
per Year
per Year
Founder Magyar Tudományos Akadémia
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0231-424X (Print)
ISSN 1588-2683 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 27 0 0
Jul 2021 19 0 0
Aug 2021 6 0 0
Sep 2021 20 0 0
Oct 2021 29 0 0
Nov 2021 17 0 0
Dec 2021 1 0 0