Author: Cs. Szabó 1
View More View Less
  • 1 Inotek Pharmaceuticals Corporation, 100 Cummings Center Suite#419E Beverly, MA 01915, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

In recent years, pyridine nucleotides NAD(H) and NADP(H) have been established as an important molecules in physiological and pathophysiological signaling and cell injury pathways. Protein modification is catalyzed by ADP-ribosyl transferases that attach the ADP-ribose moiety of NAD+ to specific aminoacid residues of the acceptor proteins, with significant changes in the function of these acceptors. Mono(ADP-ribosyl)ation reactions have been implicated to play a role both in physiological responses and in cellular responses to bacterial toxins. Cyclic ADP-ribose formation also utilizes NAD+ and primarily serves as physiological, signal transduction mechanisms regulating intracellular calcium homeostasis. In pathophysiological conditions associated with oxidative stress (such as various forms of inflammation and reperfusion injury), activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) occurs, with subsequent, substantial fall in cellular NAD+ and ATP levels, which can determine the viability and function of the affected cells. In addition, NADPH oxidases can significantly affect the balance and fate of NAD+ and NADP in oxidatively stressed cells and can facilitate the generation of various positive feedback cycles of injury. Under severe oxidant conditions, direct oxidative damage to NAD+ has also been reported. The current review focuses on PARP and on NADPH oxidases, as pathophysiologically relevant factors in creating disturbances in the cellular pyridine nucleotide balance. A separate section describes how these mechanisms apply to the pathogenesis of endothelial cell injury in selected cardiovascular pathophysiological conditions.

  • Berry C, Brosnan MJ, Fennell J, Hamilton CA, Dominiczak AF: Oxidative stress and vascular damage in hypertension. Curr. Opin. Nephrol. Hypertens. 10, 247-55 (2001)

    'Oxidative stress and vascular damage in hypertension ' () 10 Curr. Opin. Nephrol. Hypertens. : 247 -55.

    • Search Google Scholar
  • Blundell G, Jones BG, Rose FA, Tudball N: Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis 122, 163-72 (1996)

    'Homocysteine mediated endothelial cell toxicity and its amelioration ' () 122 Atherosclerosis : 163 -72.

    • Search Google Scholar
  • Christ M, Bauersachs J, Liebetrau C, Heck M, Gunther A, Wehling M: Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation: attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin. Diabetes 51, 2648-52 (2002)

    'Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation: attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin ' () 51 Diabetes : 2648 -52.

    • Search Google Scholar
  • Cole KK, Perez-Polo JR: Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury. J. Neurochem. 82, 19-29 (2002)

    'Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury ' () 82 J. Neurochem. : 19 -29.

    • Search Google Scholar
  • Affar el B, Shah RG, Dallaire AK, Castonguay V, Shah GM: Role of poly(ADP-ribose) polymerase in rapid intracellular acidification induced by alkylating DNA damage. Proc. Natl. Acad. Sci. USA 99, 245-50 (2002)

    'Role of poly(ADP-ribose) polymerase in rapid intracellular acidification induced by alkylating DNA damage ' () 99 Proc. Natl. Acad. Sci. USA : 245 -50.

    • Search Google Scholar
  • Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykantov V, Ross C, Blecha F, Dinauer M, Fisher AB: Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ. Res. 83, 730-7 (1998)

    'Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+ ' () 83 Circ. Res. : 730 -7.

    • Search Google Scholar
  • Andreoli SP: Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatr. Res. 25, 97- 101 (1989)

    'Mechanisms of endothelial cell ATP depletion after oxidant injury ' () 25 Pediatr. Res. : 97 -101.

    • Search Google Scholar
  • Anggard EE: The endothelium - the body's largest endocrine gland? J. Endocrinol. 127, 371-5 (1990)

    'The endothelium - the body's largest endocrine gland ' () 127 J. Endocrinol. : 371 -5.

  • Babior BM: The NADPH oxidase of endothelial cells. IUBMB Life 50, 267-9 (2000)

    'The NADPH oxidase of endothelial cells ' () 50 IUBMB Life : 267 -9.

  • Bai P, Bakondi E, Szabó E, Gergely P, Szabó C, Virág L: Partial protection by poly(ADP-ribose) polymerase inhibitors from nitroxyl-induced cytotoxity in thymocytes. Free Radic. Biol. Med. 31, 1616- 23 (2001)

    'Partial protection by poly(ADP-ribose) polymerase inhibitors from nitroxyl-induced cytotoxity in thymocytes ' () 31 Free Radic. Biol. Med. : 1616 -23.

    • Search Google Scholar
  • Cuzzocrea S, Zingarelli B, Caputi AP: Role of peroxynitrite and poly (ADP-ribosyl) synthetase activation in cardiovascular derangement induced by zymosan in the rat. Life Sci. 63, 923-33 (1998)

    'Role of peroxynitrite and poly (ADP-ribosyl) synthetase activation in cardiovascular derangement induced by zymosan in the rat ' () 63 Life Sci. : 923 -33.

    • Search Google Scholar
  • Cuzzocrea S, Zingarelli B, Costantino G, Szabó A, Salzman AL, Caputi AP, Szabó C: Beneficial effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase in a rat model of splanchnic artery occlusion and reperfusion. Br. J. Pharmacol. 121, 1065-74 (1997)

    'Beneficial effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase in a rat model of splanchnic artery occlusion and reperfusion ' () 121 Br. J. Pharmacol. : 1065 -74.

    • Search Google Scholar
  • Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabó C, Clark RS: Intra-mitochondrial poly-ADP-ribosylation contributes to NAD+ depletion and cell death induced by oxidative stress. J. Biol. Chem. 278, 18426-18433 (2003)

    'Intra-mitochondrial poly-ADP-ribosylation contributes to NAD+ depletion and cell death induced by oxidative stress ' () 278 J. Biol. Chem. : 18426 -18433.

    • Search Google Scholar
  • Di Lisa F, Ziegler M: Pathophysiological relevance of mitochondria in NAD(+) metabolism. FEBS Lett. 492, 4-8 (2001)

    'Pathophysiological relevance of mitochondria in NAD(+) metabolism ' () 492 FEBS Lett. : 4 -8.

    • Search Google Scholar
  • Eliasson MJ, Sampei K, Mandir AS, Hum PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL: Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3, 1089-95 (1997)

    'Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia ' () 3 Nat. Med. : 1089 -95.

    • Search Google Scholar
  • Fukuda Y, Teragawa H, Matsuda K, Yamagata T, Matsuura H, Chayama K: Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia. Heart 87, 264-9(2002)

    'Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia ' () 87 Heart : 264 -9.

    • Search Google Scholar
  • Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M: Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vase. Biol. 20, 2175-83 (2000)

    'Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology ' () 20 Arterioscler. Thromb. Vase. Biol. : 2175 -83.

    • Search Google Scholar
  • Guse AH: Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP): novel regulators of Ca2+-signaling and cell function. Curr. Mol. Med. 2, 273-82 (2002)

    'Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP): novel regulators of Ca2+-signaling and cell function ' () 2 Curr. Mol. Med. : 273 -82.

    • Search Google Scholar
  • Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM: Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105, 1656-62 (2002)

    'Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase ' () 105 Circulation : 1656 -62.

    • Search Google Scholar
  • Haag F, Koch-Nolte F: Endogenous relatives of ADP-ribosylating bacterial toxins in mice and men: potential regulators of immune cell function. J. Biol. Regul. Homeost. Agents 12, 53-62 (1998)

    'Endogenous relatives of ADP-ribosylating bacterial toxins in mice and men: potential regulators of immune cell function ' () 12 J. Biol. Regul. Homeost. Agents : 53 -62.

    • Search Google Scholar
  • Hamilton CA, Brosnan MJ, Mclntyre M, Graham D, Dominiczak AF: Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 37, 529-34 (2001)

    'Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction ' () 37 Hypertension : 529 -34.

    • Search Google Scholar
  • Heller B, Wang ZQ, Wagner EF, Radons J, Burkle A, Fehsel K, Burkart V, Kolb H: Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J. Biol. Chem. 270, 11176-80 (1995)

    'Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells ' () 270 J. Biol. Chem. : 11176 -80.

    • Search Google Scholar
  • Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T: Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88, E14-22 (2001)

    'Mechanisms underlying endothelial dysfunction in diabetes mellitus ' () 88 Circ. Res. : E14 -22.

    • Search Google Scholar
  • Jagtap P, Soriano FG, Virág L, Liaudet L, Mabley J, Szabó E, Haskó G, Marton A, Lorigados CB, Gallyas F Jr, Sumegi B, Hoyt DG, Baloglu E, VanDuzer J, Salzman AL, Southan GJ, Szabó C: Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit. Care Med. 30, 1071-82 (2002)

    'Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents ' () 30 Crit. Care Med. : 1071 -82.

    • Search Google Scholar
  • Hwang JJ, Choi SY, Koh JY: The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J. Neurochem. 82, 894-902 (2002)

    'The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5 ' () 82 J. Neurochem. : 894 -902.

    • Search Google Scholar
  • Ignarro L Ed. (2001): Nitric Oxide - Biology and Pathobiology. Academic Press, New York.

    Nitric Oxide - Biology and Pathobiology , ().

  • Janero DR, Hreniuk D, Sharif HM, Prout KC: Hydroperoxide-induced oxidative stress alters pyridine nucleotide metabolism in neonatal heart muscle cells. Am. J. Physiol. 264, C1401-10 (1993)

    'Hydroperoxide-induced oxidative stress alters pyridine nucleotide metabolism in neonatal heart muscle cells ' () 264 Am. J. Physiol. : C1401 -10.

    • Search Google Scholar
  • Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H: High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49, 1939-45 (2000)

    'High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells ' () 49 Diabetes : 1939 -45.

    • Search Google Scholar
  • Garavaglia S, D'Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M: Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J. Biol. Chem. 277, 8524-30 (2002)

    'Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis ' () 277 J. Biol. Chem. : 8524 -30.

    • Search Google Scholar
  • Goldstein S, Czapski G: Reactivity of peroxynitrite versus simultaneous generation of (*)NO and O(2)(*)(-) toward NADH. Chem. Res. Toxicol. 13, 736-41 (2000)

    'Reactivity of peroxynitrite versus simultaneous generation of (*)NO and O(2)(*)(-) toward NADH ' () 13 Chem. Res. Toxicol. : 736 -41.

    • Search Google Scholar
  • Gorlach A, Kietzmann T, Hess J: Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation. Ann. NY Acad. Sci. 973, 505-7 (2002)

    'Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation ' () 973 Ann. NY Acad. Sci. : 505 -7.

    • Search Google Scholar
  • Grant RS, Passey R, Matanovic G, Smythe G, Kapoor V: Evidence for increased de novo synthesis of NAD in immune-activated RAW264.7 macrophages: a self-protective mechanism? Arch. Biochem. Biophys. 372, 1-7 (1999)

    'Evidence for increased de novo synthesis of NAD in immune-activated RAW264.7 macrophages: a self-protective mechanism ' () 372 Arch. Biochem. Biophys. : 1 -7.

    • Search Google Scholar
  • Hoyt DG, Lazo JS: Acute pneumocyte injury, poly(ADP-ribose) polymerase activity, and pyridine nucleotide levels after in vitro exposure of murine lung slices to cyclophosphamide. Biochem. Pharmacol. 48, 1757-65 (1994)

    'Acute pneumocyte injury, poly(ADP-ribose) polymerase activity, and pyridine nucleotide levels after in vitro exposure of murine lung slices to cyclophosphamide ' () 48 Biochem. Pharmacol. : 1757 -65.

    • Search Google Scholar
  • Hu Q, Xia Y, Corda S, Zweier JL, Ziegelstein RC: Hydrogen peroxide decreases pH in human aortic endothelial cells by inhibiting Na+/H+ exchange. Circ. Res. 83, 644-51 (1998)

    'Hydrogen peroxide decreases pH in human aortic endothelial cells by inhibiting Na+/H+ exchange ' () 83 Circ. Res. : 644 -51.

    • Search Google Scholar
  • Jijon HB, Churchill T, Malfair D, Wessler A, Jewell LD, Parsons HG, Madsen KL: Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G641-51 (2000)

    'Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis ' () 279 Am. J. Physiol. Gastrointest. Liver Physiol. : G641 -51.

    • Search Google Scholar
  • Junod AF, Jornot L, Petersen H: Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity, and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and fibroblasts. J. Cell. Physiol. 140, 177-85 (1989)

    'Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity, and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and fibroblasts ' () 140 J. Cell. Physiol. : 177 -85.

    • Search Google Scholar
  • Kim YH, Koh JY: The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp. Neurol. 177, 407-18 (2002)

    'The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture ' () 177 Exp. Neurol. : 407 -18.

    • Search Google Scholar
  • Kirkland JB: Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose)polymerase. Biochim. Biophys. Acta 1092, 319-25(1991)

    'Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose)polymerase ' () 1092 Biochim. Biophys. Acta : 319 -25.

    • Search Google Scholar
  • Kirsch M, De Groot H: NAD(P)H, a directly operating antioxidant? FASEB J. 15, 1569-74 (2001)

    'NAD(P)H, a directly operating antioxidant ' () 15 FASEB J. : 1569 -74.

  • Kossenjans W, Rymaszewski Z, Barankiewicz J, Bobst A, Ashraf M: Menadione-induced oxidative stress in bovine heart microvascular endothelial cells. Microcirculation 3, 39-47 (1996)

    'Menadione-induced oxidative stress in bovine heart microvascular endothelial cells ' () 3 Microcirculation : 39 -47.

    • Search Google Scholar
  • Landmesser U, Hornig B, Drexler H: Endothelial dysfunction in hypercholesterolemia: mechanisms, pathophysiological importance, and therapeutic interventions. Semin. Thromb. Hemost 26, 529-37 (2000)

    'Endothelial dysfunction in hypercholesterolemia: mechanisms, pathophysiological importance, and therapeutic interventions ' () 26 Semin. Thromb. Hemost : 529 -37.

    • Search Google Scholar
  • Lerner F, Niere M, Ludwig A, Ziegler M: Structural and functional characterization of human NAD kinase. Biochem. Biophys. Res. Commun. 288, 69-74 (2001)

    'Structural and functional characterization of human NAD kinase ' () 288 Biochem. Biophys. Res. Commun. : 69 -74.

    • Search Google Scholar
  • Li JM, Shah AM: Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase. Cardiovasc. Res. 52, 477-86 (2001)

    'Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase ' () 52 Cardiovasc. Res. : 477 -86.

    • Search Google Scholar
  • Li JM, Shah AM: Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J. Biol. Chem. 277, 19952-60 (2002)

    'Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells ' () 277 J. Biol. Chem. : 19952 -60.

    • Search Google Scholar
  • Liaudet L, Soriano FG, Szabó E, Virág L, Mabley JG, Salzman AL, Szabó C: Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. USA 97, 10203-8(2000)

    'Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase ' () 97 Proc. Natl. Acad. Sci. USA : 10203 -8.

    • Search Google Scholar
  • Matz RL, Schott C, Stoclet JC, Andriantsitohaina R: Age-related endothelial dysfunction with respect to nitric oxide, endothelium-derived hyperpolarizing factor and cyclooxygenase products. Physiol. Res. 49, 11-8(2000)

    'Age-related endothelial dysfunction with respect to nitric oxide, endothelium-derived hyperpolarizing factor and cyclooxygenase products ' () 49 Physiol. Res. : 11 -8.

    • Search Google Scholar
  • Meyer JW, Schmitt ME: A central role for the endothelial NADPH oxidase in atherosclerosis. FEBS Lett. 472, 1-4 (2000)

    'A central role for the endothelial NADPH oxidase in atherosclerosis ' () 472 FEBS Lett. : 1 -4.

    • Search Google Scholar
  • Moss J, Balducci E, Cavanaugh E, Kim HJ, Konczalik P, Lesma EA, Okazaki IJ, Park M, Shoemaker M, Stevens LA, Zolkiewska A: Characterization of NAD:arginine ADP-ribosyltransferases. Mol. Cell. Biochem. 193, 109-13 (1999)

    'Characterization of NAD:arginine ADP-ribosyltransferases ' () 193 Mol. Cell. Biochem. : 109 -13.

    • Search Google Scholar
  • Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T: Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ. Res. 90, E58-65 (2002)

    'Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling ' () 90 Circ. Res. : E58 -65.

    • Search Google Scholar
  • Szabó C, Ed (2000): Cell death: the role of PARP. CRC Press, Boca Raton, Florida.

    Cell death: the role of PARP , ().

  • Ziegler M: New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur. J. Biochem. 267, 1550-64 (2000)

    'New functions of a long-known molecule. Emerging roles of NAD in cellular signaling ' () 267 Eur. J. Biochem. : 1550 -64.

    • Search Google Scholar
  • Pacher P, Liaudet L, Mabley J, Komjáti K, Szabó C: Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J. Am. Coll. Cardiol. 40, 1006-16 (2002)

    'Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure ' () 40 J. Am. Coll. Cardiol. : 1006 -16.

    • Search Google Scholar
  • Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabó E, Szabó C: The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51, 514-21 (2002)

    'The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes ' () 51 Diabetes : 514 -21.

    • Search Google Scholar
  • Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S: Enzymology of NAD+ synthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 73, 135-82 (1999)

    'Enzymology of NAD+ synthesis ' () 73 Adv. Enzymol. Relat. Areas Mol. Biol. : 135 -82.

  • Matsunaga T, Nakajima T, Miyazaki T, Koyama I, Hokari S, Inoue I, Kawai S, Shimomura H, Katayama S, Hara A, Komoda T: Glycated high-density lipoprotein regulates reactive oxygen species and reactive nitrogen species in endothelial cells. Metabolism 52, 42-9 (2003)

    'Glycated high-density lipoprotein regulates reactive oxygen species and reactive nitrogen species in endothelial cells ' () 52 Metabolism : 42 -9.

    • Search Google Scholar
  • Pacher P, Mabley JG, Soriano FG, Liaudet L, Komjáti K, Szabó C: Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. Br. J. Pharmacol. 135, 1347-50 (2002)

    'Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation ' () 135 Br. J. Pharmacol. : 1347 -50.

    • Search Google Scholar
  • Pacher P, Mabley JG, Soriano FG, Liaudet L, Szabó C: Activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging. Int. J. Mol. Med. 9, 659-64 (2002)

    'Activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging ' () 9 Int. J. Mol. Med. : 659 -64.

    • Search Google Scholar
  • Pescarmona GP, Bracone A, David O, Sartori ML, Bosia A: Regulation of NAD and NADP synthesis in human red cell. Acta Biol. Med. Ger. 36, 759-63 (1977)

    'Regulation of NAD and NADP synthesis in human red cell ' () 36 Acta Biol. Med. Ger. : 759 -63.

    • Search Google Scholar
  • Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG: Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 77, 1312-20 (1986)

    'Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide ' () 77 J. Clin. Invest. : 1312 -20.

    • Search Google Scholar
  • Kennedy M, Denenberg AG, Szabó C, Salzman AL: Poly(ADP-ribose) synthetase activation mediates increased permeability induced by peroxynitrite in Caco-2BBe cells. Gastroenterology 114, 510-8 (1998)

    'Poly(ADP-ribose) synthetase activation mediates increased permeability induced by peroxynitrite in Caco-2BBe cells ' () 114 Gastroenterology : 510 -8.

    • Search Google Scholar
  • Khan AU, Delude RL, Han YY, Sappington PL, Han X, Carcillo JA, Fink MP: Liposomal NAD(+) prevents diminished 0(2) consumption by immunostimulated Caco-2 cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L1082-91 (2002)

    'Liposomal NAD(+) prevents diminished 0(2) consumption by immunostimulated Caco-2 cells ' () 282 Am. J. Physiol. Lung Cell. Mol. Physiol. : L1082 -91.

    • Search Google Scholar
  • Pannirselvam M, Verma S, Anderson TJ, Triggle CR: Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db -/-) mice: role of decreased tetrahydrobiopterin bioavailability. Br. J. Pharmacol. 136, 255-63 (2002)

    'Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db -/-) mice: role of decreased tetrahydrobiopterin bioavailability ' () 136 Br. J. Pharmacol. : 255 -63.

    • Search Google Scholar
  • Parinandi NL, Kleinberg MA, Usatyuk PV, Cummings RJ, Pennathur A, Cardounel AJ, Zweier JL, Garcia JG, Natarajan V: Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L26-38 (2003)

    'Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells ' () 284 Am. J. Physiol. Lung Cell. Mol. Physiol. : L26 -38.

    • Search Google Scholar
  • Shieh WM, Ame JC, Wilson MV, Wang ZQ, Koh DW, Jacobson MK, Jacobson EL: Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 273, 30069-72 (1998)

    'Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers ' () 273 J. Biol. Chem. : 30069 -72.

    • Search Google Scholar
  • Sorescu D, Szocs K, Griendling KK: NAD(P)H oxidases and their relevance to atherosclerosis. Trends Cardiovasc Med. 11, 124-31 (2001)

    'NAD(P)H oxidases and their relevance to atherosclerosis ' () 11 Trends Cardiovasc Med. : 124 -31.

    • Search Google Scholar
  • Soriano FG, Virág L, Szabó C: Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation. J. Mol. Med. 79, 437-48 (2001)

    'Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation ' () 79 J. Mol. Med. : 437 -48.

    • Search Google Scholar
  • Southan GJ, Szabó C: Inhibitors of poly(ADP-ribose) polymerase. Current Med. Chem. (2003) in press

    'Inhibitors of poly(ADP-ribose) polymerase ' () Current Med. Chem. .

  • Szabó C, Cuzzocrea S, Zingarelli B, O'Connor M, Salzman AL: Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J. Clin. Invest. 100, 723-35 (1997)

    'Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite ' () 100 J. Clin. Invest. : 723 -35.

    • Search Google Scholar
  • Szabó C, Dawson VL: Role of poly (ADP-ribose) synthetase activation in inflammation and reperfusion injury. Trends Pharmacol. Sci. 19, 287-98 (1998)

    'Role of poly (ADP-ribose) synthetase activation in inflammation and reperfusion injury ' () 19 Trends Pharmacol. Sci. : 287 -98.

    • Search Google Scholar
  • Szabó C, Pacher P, Komjati K, Mabley JG, Benko R, Kollai M: Poly(ADP-ribose) polymerase (PARP) activation is an early event in angiotensin-induced cardiovascular disorders. FASEB J. 17: A803 (2003)

    'Poly(ADP-ribose) polymerase (PARP) activation is an early event in angiotensin-induced cardiovascular disorders ' () 17 FASEB J. : A803.

    • Search Google Scholar
  • Szabó C, Virág L, Cuzzocrea S, Scott GS, Hake P, O'Connor MP, Zingarelli B, Salzman A, Kun E: Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase. Proc. Natl. Acad. Sci. USA 95, 3867-72 (1998)

    'Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase ' () 95 Proc. Natl. Acad. Sci. USA : 3867 -72.

    • Search Google Scholar
  • Szabó C, Zanchi A, Komjati K, Pacher P, Krolewski AS, Quist WC, LoGerfo FW, Horton ES, Veves A: Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 106, 2680-6 (2002)

    'Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity ' () 106 Circulation : 2680 -6.

    • Search Google Scholar
  • Szabó C, Zingarelli B, O'Connor M, Salzman AL: DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. USA 93, 1753-8 (1996)

    'DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite ' () 93 Proc. Natl. Acad. Sci. USA : 1753 -8.

    • Search Google Scholar
  • Szabó C: PARP as a drug target for the therapy of diabetic cardiovascular dysfunction. Drug News Perspect. 15, 197-205 (2002)

    'PARP as a drug target for the therapy of diabetic cardiovascular dysfunction ' () 15 Drug News Perspect. : 197 -205.

    • Search Google Scholar
  • Szabó G, Bahrle S, Stumpf N, Sonnenberg K, Szabó E, Pacher P, Csont T, Schulz R, Dengler TJ, Liaudet L, Jagtap PG, Southan GJ, Vahl CF, Hagl S, Szabó C: Poly(ADP-ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ. Res. 90, 100-6 (2002)

    'Poly(ADP-ribose) polymerase inhibition reduces reperfusion injury after heart transplantation ' () 90 Circ. Res. : 100 -6.

    • Search Google Scholar
  • Van Heerebeek L, Meischl C, Stooker W, Meijer CJ, Niessen HW, Roos D: NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? J. Clin. Pathol. 55, 561-8 (2002)

    'NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system ' () 55 J. Clin. Pathol. : 561 -8.

    • Search Google Scholar
  • Vane JR, Anggard EE, Botting RM: Regulatory functions of the vascular endothelium. N. Engl. J. Med. 323, 27-36(1990)

    'Regulatory functions of the vascular endothelium ' () 323 N. Engl. J. Med. : 27 -36.

  • Takasawa S, Okamoto H: Pancreatic beta-cell death, regeneration and insulin secretion: roles of poly(ADP-ribose) polymerase and cyclic ADP-ribose. Int. J. Exp. Diabetes Res. 3, 79-96 (2002)

    'Pancreatic beta-cell death, regeneration and insulin secretion: roles of poly(ADP-ribose) polymerase and cyclic ADP-ribose ' () 3 Int. J. Exp. Diabetes Res. : 79 -96.

    • Search Google Scholar
  • Terada LS: Oxidative stress and endothelial activation. Crit. Care Med. 30, S186-91 (2002)

    'Oxidative stress and endothelial activation ' () 30 Crit. Care Med. : S186 -91.

  • Thies RL, Autor AP: Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance. Arch. Biochem. Biophys. 286, 353-63 (1991)

    'Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance ' () 286 Arch. Biochem. Biophys. : 353 -63.

    • Search Google Scholar
  • Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW: Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ. Res. 91, 1160-7 (2002)

    'Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis ' () 91 Circ. Res. : 1160 -7.

    • Search Google Scholar
  • Valdez LB, Alvarez S, Arnaiz SL, Schopfer F, Carreras MC, Poderoso JJ, Boveris A: Reactions of peroxynitrite in the mitochondrial matrix. Free Radic. Biol. Med. 29, 349-56 (2000)

    'Reactions of peroxynitrite in the mitochondrial matrix ' () 29 Free Radic. Biol. Med. : 349 -56.

    • Search Google Scholar
  • Vallet B, Wiel E: Endothelial cell dysfunction and coagulation. Crit. Care Med. 29, S36-41 (2001)

    'Endothelial cell dysfunction and coagulation ' () 29 Crit. Care Med. : S36 -41.

  • Soriano FG, Pacher P, Mabley J, Liaudet L, Szabó C: Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ. Res. 89, 684-91 (2001)

    'Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase ' () 89 Circ. Res. : 684 -91.

    • Search Google Scholar
  • Soriano FG, Virág L, Jagtap P, Szabó E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabó C: Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7, 108-13 (2001)

    'Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation ' () 7 Nat. Med. : 108 -13.

    • Search Google Scholar
  • Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. USA 95, 9220-5 (1998)

    'Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors ' () 95 Proc. Natl. Acad. Sci. USA : 9220 -5.

    • Search Google Scholar
  • Venturini G, Colasanti M, Persichini T, Fioravanti E, Ascenzi P, Palomba L, Cantoni O, Musci G: Betaamyloid inhibits NOS activity by subtracting NADPH availability. FASEB J. 16, 1970-2 (2002)

    'Betaamyloid inhibits NOS activity by subtracting NADPH availability ' () 16 FASEB J. : 1970 -2.

    • Search Google Scholar
  • Virág L, Salzman AL, Szabó C: Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J. Immunol. 161, 3753-9 (1998)

    'Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death ' () 161 J. Immunol. : 3753 -9.

    • Search Google Scholar
  • Virág L, Scott GS, Antal-Szalmas P, O'Connor M, Ohshima H, Szabó C: Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mol. Pharmacol. 56, 824-33 (1999)

    'Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity ' () 56 Mol. Pharmacol. : 824 -33.

    • Search Google Scholar
  • Yu SW, Wang H, Poitra, MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL: Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259-63 (2002)

    'Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor ' () 297 Science : 259 -63.

    • Search Google Scholar
  • Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, Diez J: Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38, 1395-9 (2001)

    'Oxidative stress in arterial hypertension: role of NAD(P)H oxidase ' () 38 Hypertension : 1395 -9.

    • Search Google Scholar
  • Zhang J, Ed: Therapeutic Implications of PARP Inhibition. CRC Press, Boca Raton, Florida, 2002

    Therapeutic Implications of PARP Inhibition , ().

  • Zingarelli B, Salzman AL, Szabó C: Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83, 85-94 (1998)

    'Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury ' () 83 Circ. Res. : 85 -94.

    • Search Google Scholar
  • Zulueta JJ, Sawhney R, Yu FS, Cote CC, Hassoun PM: Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am. J. Physiol. 272, L897-902 (1997)

    'Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation ' () 272 Am. J. Physiol. : L897 -902.

    • Search Google Scholar
  • Zulueta JJ, Yu FS, Hertig IA, Thannickal VJ, Hassoun PM: Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am. J. Respir. Cell. Mol. Biol. 12, 41-9 (1995)

    'Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane ' () 12 Am. J. Respir. Cell. Mol. Biol. : 41 -9.

    • Search Google Scholar
  • Virág L, Szabó C: BCL-2 protects peroxynitrite-treated thymocytes from poly(ADP-ribose) synthase (PARS)-independent apoptotic but not from PARS-mediated necrotic cell death. Free Radic. Biol. Med. 29, 704-13 (2000)

    'BCL-2 protects peroxynitrite-treated thymocytes from poly(ADP-ribose) synthase (PARS)-independent apoptotic but not from PARS-mediated necrotic cell death ' () 29 Free Radic. Biol. Med. : 704 -13.

    • Search Google Scholar
  • Virág L, Szabó C: Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J. 15, 99-107 (2001)

    'Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death ' () 15 FASEB J. : 99 -107.

    • Search Google Scholar
  • Virág L, Szabó C: The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375-429 (2002)

    'The therapeutic potential of poly(ADP-ribose) polymerase inhibitors ' () 54 Pharmacol. Rev. : 375 -429.

    • Search Google Scholar
  • Wattanapitayakul SK, Weinstein DM, Holycross BJ, Bauer JA: Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders. FASEB J. 14, 271-8 (2000)

    'Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders ' () 14 FASEB J. : 271 -8.

    • Search Google Scholar
  • Werner-Felmayer G, Golderer G, Werner ER: Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr. Drug Metab. 3, 159-73 (2002)

    'Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects ' () 3 Curr. Drug Metab. : 159 -73.

    • Search Google Scholar
  • Wolf G: Free radical production and angiotensin. Curr. Hypertens. Rep. 2, 167-73 (2000)

    'Free radical production and angiotensin ' () 2 Curr. Hypertens. Rep. : 167 -73.

  • Yamashiro S, Kuniyoshi Y, Arakaki K, Miyagi K, Koja K: The effect of insufficiency of tetrahydrobiopterin on endothelial function and vasoactivity. Jpn. J. Thorac. Cardiovasc. Surg. 50, 472-7 (2002)

    'The effect of insufficiency of tetrahydrobiopterin on endothelial function and vasoactivity ' () 50 Jpn. J. Thorac. Cardiovasc. Surg. : 472 -7.

    • Search Google Scholar
  • Ying W, Chen Y, Alano CC, Swanson RA: Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J. Cereb. Blood Flow Metab. 22, 774-9 (2002)

    'Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes ' () 22 J. Cereb. Blood Flow Metab. : 774 -9.

    • Search Google Scholar

The author instruction is available in PDF.

Please, download the file from HERE

Senior editors

Editor(s)-in-Chief: Rosivall, László

Honorary Editor(s)-in-Chief): Monos, Emil

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

      Benedek, György (Szeged)
      Benyó, Zoltán (Budapest)
      Boros, Mihály (Szeged)
      Chernoch, László (Debrecen)
      Détári, László (Budapest)
      Hamar, János (Budapest)
      Hantos, Zoltán (Szeged)
      Hunyady, László (Budapest)
      Imre, Sándor (Debrecen)
      Jancsó, Gábor (Szeged)
      Karádi, Zoltán (Pécs)
      Kovács, László (Debrecen)
      Palkovits, Miklós (Budapest)
      Papp, Gyula (Szeged)
      Pavlik, Gábor (Budapest)
      Spät, András (Budapest)
      Szabó, Gyula (Szeged)
      Szelényi, Zoltán (Pécs)
      Szolcsányi, János (Pécs)
      Szollár, Lajos (Budapest)
      Szücs, Géza (Debrecen)
      Telegdy, Gyula (Szeged)
      Toldi, József (Szeged)
      Tósaki, Árpád (Debrecen)

International Editorial Board

      R. Bauer (Jena)
      W. Benjelloun (Rabat)
      A. W. Cowley Jr. (Milwaukee)
      D. Djuric (Belgrade)
      C. Fry (London)
      S. Greenwald (London)
      O. Hänninen (Kuopio)
      H. G. Hinghofer-Szalkay (Graz)
      Th. Kenner (Graz)
      Gy. Kunos (Richmond)
      M. Mahmoudian (Tehran)
      T. Mano (Seki, Gifu)
      G. Navar (New Orleans)
      H. Nishino (Nagoya)
      O. Petersen (Liverpool)
      U. Pohl (Münich)
      R. S. Reneman (Maastricht)
      A. Romanovsky (Phoenix)
      G. M. Rubanyi (Richmond)
      T. Sakata (Oita)
      A. Siddiqui (Karachi)
      Cs. Szabo (Beverly)
      E. Vicaut (Paris)
      N. Westerhof (Amsterdam)
      L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Physiologica Hungarica
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: aph@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index Expanded
  • SCOPUS

 

Acta Physiologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0231-424X (Print)
ISSN 1588-2683 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 6 0 0
Jun 2021 18 1 1
Jul 2021 8 0 0
Aug 2021 20 0 0
Sep 2021 9 0 0
Oct 2021 10 0 0
Nov 2021 0 0 0