View More View Less
  • 1 Institute of Surgical Research University of Szeged, Szeged, Hungary
  • 2 Institute of Surgical Research University of Szeged, Szeged, Hungary
  • 3 Department of Medical Informatics and Engineering University of Szeged, Szeged, Hungary
  • 4 Institute of Surgical Research University of Szeged, Szeged, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Because of similar pathophysiologic changes, oleic acid (OA)-induced pulmonary edema has been well established as an experimental model of certain types of ARDS. Data in the literature indicate changes mostly in global pulmonary mechanical parameters (lung resistance and compliance) during permeability-type edema. Therefore, we designed this study (1) to separate the OA-induced mechanical responses into airway and parenchymal components, and (2) to examine the relationship between the mechanical parameters and the degree of edema. Anaesthetized, paralyzed, mechanically ventilated rats were given iv. OA in doses of 0 (C n=9), 0.05 (OA0.05 n=8), 0.1 (OA0.1 n=10) and 0.3 (OA0.3 n=5) ml/kg. Respiratory system impedance was measured with a wave-tube low-frequency forced oscillation technique, and a model fitting was used to estimate airway (Raw) and lung tissue parameters (G, parenchymal damping; H, elastance). Pulmonary edema was quantified by gravimetric analysis (WW/DW, wet-to-dry weight ratio). In the OAL0.05 group, transient, but significant increase in Raw, only slight increase in H, and no response in G was observed. Different responses were obtained in OA0.1: significant Raw, G, and H values in survivors; rapid and significantly higher responses in all three parameters in non-survivors. Extremely large parameter values were measured in OA0.3. We found that OA caused dose-related increases in WW, DW and WW/DW. Highly significant correlations were found between the degree of edema and G or H, but not Raw. This study demonstrates that low dose of OA had only transient lung mechanical effects; however, it resulted in mild edema. The higher dose elicited significant airway and tissue changes (smaller responses in survivors than in non-survivors), and severe edema. The strong correlation between lung tissue parameters and the degree of edema suggests that the OA-induced acute lung injury is manifested primarily in the alterations in parenchymal mechanics.

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harris MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183-187 (2000)

    'Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia ' () 405 Nature : 183 -187.

    • Search Google Scholar
  • Szolcsányi J, Sándor Z, Pethö G, Varga A, Bölcskei K, Almási R, Riedl Z, Hajos G, Czéh G: Direct evidence for activation and desensitization of the capsaicin receptor by N-oleoyldopamine on TRPV1-transfected cell, line in gene deleted mice and in the rat. Neurosci. Letters. In Press, Corrected Proof, Available online 3 March (2004)

    'Direct evidence for activation and desensitization of the capsaicin receptor by N-oleoyldopamine on TRPV1-transfected cell, line in gene deleted mice and in the rat ' () Neurosci. Letters. .

    • Search Google Scholar
  • Chu CJ, Huang SM, De Petrocellis L, Bisogno T, Ewing SA, Miller JD, Zipkin RE, Daddario N, Appendino G, Di Marzo V, Walker JM: N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 278, 13633-13639 (2003)

    'N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia ' () 278 J. Biol. Chem. : 13633 -13639.

    • Search Google Scholar
  • Almási R, Pethö G, Bölcskei K, Szolcsányi J: Effect of resiniferatoxin on the noxious heat threshold temperature in the rat: A novel heat allodynia model sensitive to analgesics. Br. J. Pharmacol. 139, 49-58 (2003)

    'Effect of resiniferatoxin on the noxious heat threshold temperature in the rat: A novel heat allodynia model sensitive to analgesics ' () 139 Br. J. Pharmacol. : 49 -58.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 4 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0