Authors:
S Matsumoto Department of Sensory and Integrative Medicine, Division of Neurobiology and Anatomy, Niigata University Graduate School of Medical and Dental Sciences Asahimachi, Niigata 951-8122, Japan

Search for other papers by S Matsumoto in
Current site
Google Scholar
PubMed
Close
,
K Hoshino Department of Sensory and Integrative Medicine, Division of Neurobiology and Anatomy, Niigata University Graduate School of Medical and Dental Sciences Asahimachi, Niigata 951-8122, Japan

Search for other papers by K Hoshino in
Current site
Google Scholar
PubMed
Close
,
K Kobayashi Department of Sensory and Integrative Medicine, Division of Neurobiology and Anatomy, Niigata University Graduate School of Medical and Dental Sciences Asahimachi, Niigata 951-8122, Japan

Search for other papers by K Kobayashi in
Current site
Google Scholar
PubMed
Close
, and
M Norita Department of Sensory and Integrative Medicine, Division of Neurobiology and Anatomy, Niigata University Graduate School of Medical and Dental Sciences Asahimachi, Niigata 951-8122, Japan

Search for other papers by M Norita in
Current site
Google Scholar
PubMed
Close
Restricted access

The postnatal development of the corticothalamic projection from the lateral suprasylvian cortex (LS) to the lateral medialis-suprageniculate nucleus (LM-Sg) of the cat thalamus was assessed by means of the anterograde tracer biocytin. In the adult, two types of corticothalamic fibers were found: type I established a network of fine fibers present throughout the LM-Sg, it was characterized by a linear sequence of small (less than 0.5 m in diameter), single terminal boutons making contact mainly with thin dendrites and/or dendritic spines. Type II, found less frequently, gave off short, side branches near axon terminals and formed clusters of 5-10 large terminal boutons (0.5-1.5 m in diameter), making contact predominately with medium-sized dendrites and/or vesicle-containing profiles, forming a synaptic glomerulus. At birth (P0), anterogradely-labeled fibers were found in the LM-Sg as in adults. In the early postnatal period (until P6) as well as around the time of eye-opening (P7-P10) to P21, neonatal fibers were largely unbranched many of them having axons tipped with growth cones. Axon terminals containing synaptic vesicles were rarely observed but when present these exhibited considerable variation in their morphological appearance of synapses. Thus, it was not possible to categorize them into the two types of axons which characterize the adult. After P25, terminal swellings bearing a close resemblance to those of type II fibers begin to appear. In this way, the main two corticothalamic fiber types could be identified. These findings demonstrate that significant postnatal changes occur in the synaptology of corticothalamic fibers in the LM-Sg, particularly with the maturation of type II fibers.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Rosivall, László

Honorary Editor(s)-in-Chief): Monos, Emil

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

    1. Benedek, György (Szeged)
    1. Benyó, Zoltán (Budapest)
    1. Boros, Mihály (Szeged)
    1. Chernoch, László (Debrecen)
    1. Détári, László (Budapest)
    1. Hamar, János (Budapest)
    1. Hantos, Zoltán (Szeged)
    1. Hunyady, László (Budapest)
    1. Imre, Sándor (Debrecen)
    1. Jancsó, Gábor (Szeged)
    1. Karádi, Zoltán (Pécs)
    1. Kovács, László (Debrecen)
    1. Palkovits, Miklós (Budapest)
    1. Papp, Gyula (Szeged)
    1. Pavlik, Gábor (Budapest)
    1. Spät, András (Budapest)
    1. Szabó, Gyula (Szeged)
    1. Szelényi, Zoltán (Pécs)
    1. Szolcsányi, János (Pécs)
    1. Szollár, Lajos (Budapest)
    1. Szücs, Géza (Debrecen)
    1. Telegdy, Gyula (Szeged)
    1. Toldi, József (Szeged)
    1. Tósaki, Árpád (Debrecen)

International Editorial Board

    1. R. Bauer (Jena)
    1. W. Benjelloun (Rabat)
    1. A. W. Cowley Jr. (Milwaukee)
    1. D. Djuric (Belgrade)
    1. C. Fry (London)
    1. S. Greenwald (London)
    1. O. Hänninen (Kuopio)
    1. H. G. Hinghofer-Szalkay (Graz)
    1. Th. Kenner (Graz)
    1. Gy. Kunos (Richmond)
    1. M. Mahmoudian (Tehran)
    1. T. Mano (Seki, Gifu)
    1. G. Navar (New Orleans)
    1. H. Nishino (Nagoya)
    1. O. Petersen (Liverpool)
    1. U. Pohl (Münich)
    1. R. S. Reneman (Maastricht)
    1. A. Romanovsky (Phoenix)
    1. G. M. Rubanyi (Richmond)
    1. T. Sakata (Oita)
    1. A. Siddiqui (Karachi)
    1. Cs. Szabo (Beverly)
    1. E. Vicaut (Paris)
    1. N. Westerhof (Amsterdam)
    1. L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Physiologica Hungarica
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: aph@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index Expanded
  • SCOPUS

 

Acta Physiologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0231-424X (Print)
ISSN 1588-2683 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2024 20 0 0
Aug 2024 12 0 0
Sep 2024 9 0 0
Oct 2024 35 0 0
Nov 2024 28 0 0
Dec 2024 16 0 0
Jan 2025 4 0 0