View More View Less
  • 1 University of California & VASDHS Division of Nephrology-Hypertension, School of Medicine 3350 La Jolla Village Drive (111-H) San Diego California 92161 USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Kidney blood flow is highly regulated by a combination of myogenic autoregulation, multiple neurohormonal systems and the tubuloglomerular feedback system, the later of which specifically relates tubular reabsorption to the filtered load. Oxygen and substrate requirements of the kidney are dictated by both supply of oxygen and substrates and metabolic demands of the kidney. The tubuloglomerular feedback system utilizes mediators which are intimately linked to cellular metabolism, ATP and adenosine. This system based upon communication transfer between the macular densa and the afferent arteriole stabilizes kidney function and is not static but temporally adapts or resets to new external physiologic conditions. Such temporal adaptation occurs via modulators such as nitric oxide (NO), primarily derived from NOS-1, angiotensin II and COX-2 products. These hormonal influences also exert capacities to modulate cellular demands for oxygen, particularly NO which decreases oxygen consumption via multiple mechanisms. The several mechanisms whereby NO and other hormonal systems and transporter activity can regulate and produce changes in kidney metabolic demands are discussed. Modulators which influence temporal adaptation and resetting of TGF are also significant contributors to the regulation of cellular oxygen consumption in the kidney. These systems may act in concert to preserve the coordination of filtered load and tubular reabsorption and the metabolic demands of kidney function, thereby determining the ischemic threshold for kidney function.

  • Blantz RC: Pathophysiology of pre-renal azotemia. Nephrology forum. Kidney Int. 53, 512–523 (1997)

    Blantz R.C. , 'Pathophysiology of pre-renal azotemia. Nephrology forum ' (1997 ) 53 Kidney Int. : 512 -523.

    • Search Google Scholar
  • Guyton AC, Langston JB, Navar G: Theory for renal autoregulation by feedback at the juxtaglomerular apparatus. Circ. Res. 15(Suppl), 187–197 (1964)

    Navar G. , 'Theory for renal autoregulation by feedback at the juxtaglomerular apparatus ' (1964 ) 15 Circ. Res. : 187 -197.

    • Search Google Scholar
  • Brenner BM, Troy JL, Daugharty TM, Deen WM, Robertson CR: Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am. J. Physiol. 223, 1184–1190 (1972)

    Robertson C.R. , 'Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR ' (1972 ) 223 Am. J. Physiol. : 1184 -1190.

    • Search Google Scholar
  • Tucker BJ, Blantz RC: Analysis of the determinants of nephron filtration rate. Am. J. Physiol. 232, F269–F273 (1977)

    Blantz R.C. , 'Analysis of the determinants of nephron filtration rate ' (1977 ) 232 Am. J. Physiol. : F269 -F273.

    • Search Google Scholar
  • Blantz RC, Weir M: Are the oxygen costs of kidney function highly regulated? Curr. Opin. Nephrol. Hypertens. 13, 67–71 (2004)

    Weir M. , 'Are the oxygen costs of kidney function highly regulated? ' (2004 ) 13 Curr. Opin. Nephrol. Hypertens. : 67 -71.

    • Search Google Scholar
  • Schurek HJ: Kidney medullary hypoxia: a key to understanding acute renal failure? [in German]. Klin. Wochenschr. 66, 828–835 (1988)

    Schurek H.J. , 'Kidney medullary hypoxia: a key to understanding acute renal failure? [in German] ' (1988 ) 66 Klin. Wochenschr. : 828 -835.

    • Search Google Scholar
  • Schurek HJ, Jost U, Baumgartl H, Baumgartl H, Bertram H, Heckman U: Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am. J. Physiol. 259, F910–F915 (1990)

    Heckman U. , 'Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex ' (1990 ) 259 Am. J. Physiol. : F910 -F915.

    • Search Google Scholar
  • Welch WJ, Baumgartl H, Lubbers D, Wilcox CS: Nephron PO 2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 59, 230–237 (2001)

    Wilcox C.S. , 'Nephron PO2 and renal oxygen usage in the hypertensive rat kidney ' (2001 ) 59 Kidney Int. : 230 -237.

    • Search Google Scholar
  • Deetjen P, Kramer K: The relation of O 2 consumption by the kidney to Na re-resorption. Pflugers Arch. 273, 636–650 (1961)

    Kramer K. , 'The relation of O2 consumption by the kidney to Na re-resorption ' (1961 ) 273 Pflugers Arch. : 636 -650.

    • Search Google Scholar
  • Thurau K: Renal Na + reabsorption and O 2 uptake in dogs during hypoxia and hydrocholorothiazide infusion. Proc. Soc. Exp. Biol. Med. 106, 714–717 (1961)

    Thurau K. , 'Renal Na+ reabsorption and O2 uptake in dogs during hypoxia and hydrocholorothiazide infusion ' (1961 ) 106 Proc. Soc. Exp. Biol. Med. : 714 -717.

    • Search Google Scholar
  • Thurau K, Schnermann: Die Natriumkonzentration an den Macula Densa Zellen als regulierender Factor für das Glomerulumfiltrat. (Mikropunktionsversuche). Klin. Wochenschr. 43, 410–413 (1965)

    Schnermann , 'Die Natriumkonzentration an den Macula Densa Zellen als regulierender Factor für das Glomerulumfiltrat. (Mikropunktionsversuche) ' (1965 ) 43 Klin. Wochenschr. : 410 -413.

    • Search Google Scholar
  • Smith HW (1937): The Physiology of the Kidney. New York, Oxford.

    Smith H.W. , '', in The Physiology of the Kidney , (1937 ) -.

  • Thomson SC, Bao D, Deng A, Vallon V: Adenosine formed by 5’-nucleotidase mediates tubuloglomerular feedback. J Clin Invest. 106, 289–298 (2000)

    Vallon V. , 'Adenosine formed by 5’-nucleotidase mediates tubuloglomerular feedback ' (2000 ) 106 J Clin Invest. : 289 -298.

    • Search Google Scholar
  • Franco M, Bell PD, Navar G: Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism. Am. J. Physiol. 257, F231–F236 (1989)

    Navar G. , 'Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism ' (1989 ) 257 Am. J. Physiol. : F231 -F236.

    • Search Google Scholar
  • Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J: Mediation of tubuloglomerular feedback by adenosine: Evidence from mice lacking adenosine 1 receptors. PNAS. 98, 9983–9988 (2001)

    Schnermann J. , 'Mediation of tubuloglomerular feedback by adenosine: Evidence from mice lacking adenosine 1 receptors ' (2001 ) 98 PNAS : 9983 -9988.

    • Search Google Scholar
  • Bell PD, Lapointe J-Y, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K-I, Kovacs G, Okada Y: Macula densa cell signaling involves ATP release through a maxi anion channel. PNAS 100, 4322–4327 (2003)

    Okada Y. , 'Macula densa cell signaling involves ATP release through a maxi anion channel ' (2003 ) 100 PNAS : 4322 -4327.

    • Search Google Scholar
  • Nishiyama A, Navar LG: ATP mediates tubuloglomerular feedback. Am. J. Physiol. 283, R273–R275 (2002)

    Navar L.G. , 'ATP mediates tubuloglomerular feedback ' (2002 ) 283 Am. J. Physiol. : R273 -R275.

    • Search Google Scholar
  • Welch WJ, Wilcox CS, Thomson SC: Nitric oxide and tubuloglomerular feedback. Seminars in Nephrol. 19, 2351–2362 (1999)

    Thomson S.C. , 'Nitric oxide and tubuloglomerular feedback ' (1999 ) 19 Seminars in Nephrol. : 2351 -2362.

    • Search Google Scholar
  • Thomson SC, Bachmann S, Bostanjoglo M, Ecelbarger CA, Peterson OW, Schwartz D, Bao D, Blantz RC: Temporal adjustment of the juxtaglomerular apparatus during sus inhibition of proximal reabsorption. J. Clin. Invest. 104, 1149–1158 (1999)

    Blantz R.C. , 'Temporal adjustment of the juxtaglomerular apparatus during sus inhibition of proximal reabsorption ' (1999 ) 104 J. Clin. Invest. : 1149 -1158.

    • Search Google Scholar
  • Brown R, Ollerstam A, Persson AEG: Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion. Kidney Int. 65, 1349–1356 (2004)

    Persson A.E.G. , 'Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion ' (2004 ) 65 Kidney Int. : 1349 -1356.

    • Search Google Scholar
  • Thomson SC, Blantz RC: Homeostatic efficiency of tubuloglomerular feedback in hydropenia, euvolemia, and acute volume expansion. Am. J. Physiol. 264, F930–936 (1993)

    Blantz R.C. , 'Homeostatic efficiency of tubuloglomerular feedback in hydropenia, euvolemia, and acute volume expansion ' (1993 ) 264 Am. J. Physiol. : F930 -936.

    • Search Google Scholar
  • Tucker BJ, Steiner S, Gushwa L, Blantz RC: Studies on the tubuloglomerular feedback system in the rat. Mechanism of reduction in filtration rate with benzolamide. J. Clin. Invest. 62, 993–1004 (1978)

    Blantz R.C. , 'Studies on the tubuloglomerular feedback system in the rat. Mechanism of reduction in filtration rate with benzolamide ' (1978 ) 62 J. Clin. Invest. : 993 -1004.

    • Search Google Scholar
  • Ren Y, Garvin JL, Liu R, Carretero OA: Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int. 66, 1479–1485 (2004)

    Carretero O.A. , 'Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback ' (2004 ) 66 Kidney Int. : 1479 -1485.

    • Search Google Scholar
  • Hansen PB, Schnermann J: Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am. J. Physiol. 285, F590–F599 (2003)

    Schnermann J. , 'Vasoconstrictor and vasodilator effects of adenosine in the kidney ' (2003 ) 285 Am. J. Physiol. : F590 -F599.

    • Search Google Scholar
  • Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P, Theilig F, Bachmann S, Deng C, Briggs J, Schnermann J: Impairment of tubuloglomerular feedback regulation of GFR in ecto-5’-nucleotidase/CD73-deficient mice. J. Clin. Invest. 114, 634–642 (2004)

    Schnermann J. , 'Impairment of tubuloglomerular feedback regulation of GFR in ecto-5’-nucleotidase/CD73-deficient mice ' (2004 ) 114 J. Clin. Invest. : 634 -642.

    • Search Google Scholar
  • Thomson SC, Blantz RC, Vallon V: Increased tubular flow induces resetting of tubuloglomerular feedback in euvolemic rats. Am. J. Physiol. 270, F461–F468 (1996)

    Vallon V. , 'Increased tubular flow induces resetting of tubuloglomerular feedback in euvolemic rats ' (1996 ) 270 Am. J. Physiol. : F461 -F468.

    • Search Google Scholar
  • Thomson SC, Vallon V, Blantz RC: Reduced proximal reabsorption resets tubuloglomerular feedback in euvolemic rats. Am. J. Physiol. 273, R1414–R1420 (1997)

    Blantz R.C. , 'Reduced proximal reabsorption resets tubuloglomerular feedback in euvolemic rats ' (1997 ) 273 Am. J. Physiol. : R1414 -R1420.

    • Search Google Scholar
  • Deng A, Hammes JS, Thomson SC: Hemodynamics of early tubuloglomerular feedback resetting during reduced proximal reabsorption. Kidney Int. 62, 2136–2143 (2002)

    Thomson S.C. , 'Hemodynamics of early tubuloglomerular feedback resetting during reduced proximal reabsorption ' (2002 ) 62 Kidney Int. : 2136 -2143.

    • Search Google Scholar
  • Deng A, Wead LM, Blantz RC: Temporal adaptation of tubuloglomerular feedback: effects of COX-2. Kidney Int. 66, 1–6 (2004)

    Blantz R.C. , 'Temporal adaptation of tubuloglomerular feedback: effects of COX-2 ' (2004 ) 66 Kidney Int. : 1 -6.

    • Search Google Scholar
  • Ichihara A, Inscho EW, Imig JD, Navar LG: Neuronal nitric oxide synthase modulates rat renal microvascular function. Am. J. Physiol. 274, F516–524 (1998)

    Navar L.G. , 'Neuronal nitric oxide synthase modulates rat renal microvascular function ' (1998 ) 274 Am. J. Physiol. : F516 -524.

    • Search Google Scholar
  • Ichihara A, Navar LG: Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity. Am. J. Physiol. 277, F113–120 (1999)

    Navar L.G. , 'Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity ' (1999 ) 277 Am. J. Physiol. : F113 -120.

    • Search Google Scholar
  • Vallon V, Traynor T, Barajas L, Huang YG, Briggs JP, Schnermann J: Feedback control of glomerular vascular tone in nNOS knockout mice. J. Am. Soc. Nephrol. 12, 1599–1606 (2001)

    Schnermann J. , 'Feedback control of glomerular vascular tone in nNOS knockout mice ' (2001 ) 12 J. Am. Soc. Nephrol. : 1599 -1606.

    • Search Google Scholar
  • Thomson SC, Deng A, Komine ZN, Hammes JS, Blantz RC, Gabbai FB: Early diabetes as a model for testing the regulation of juxtaglomerular NOS1. Am. J. Physiol. 287, F732–F738 (2004)

    Gabbai F.B. , 'Early diabetes as a model for testing the regulation of juxtaglomerular NOS1 ' (2004 ) 287 Am. J. Physiol. : F732 -F738.

    • Search Google Scholar
  • Bing Y, Yao B, Xu J, Qi Z, Harris RC, Zhang MZ: The role of renal cortical cyclooxygenase-2 (COX-2) expression in hyperfiltration in rats with high protein intake. Am. J. Physiol. Renal Physiol. Apr 4; [Epub] (2006)

  • Siragy HM, Linden J: Sodium intake markedly alters renal interstitial fluid adenosine. Hypertension 27, 404–407 (1996)

    Linden J. , 'Sodium intake markedly alters renal interstitial fluid adenosine ' (1996 ) 27 Hypertension : 404 -407.

    • Search Google Scholar
  • Zou AP, Wu F, Li PL, Cowley AW Jr: Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats. Hypertension 33, 511–516 (1999)

    Cowley A.W. , 'Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats ' (1999 ) 33 Hypertension : 511 -516.

    • Search Google Scholar
  • Satriano J, Wead L, Cardus A, Deng A, Boss GR, Thomson SC, Blantz RC: Regulation of Ecto-5’-nucleotidase by NaCl and nitric oxide: potential roles in tubuloglomerular feedback and adaptation. Am. J. Physiol. Renal Physiol. 291, F1078–1080 (2006)

    Blantz R.C. , 'Regulation of Ecto-5’-nucleotidase by NaCl and nitric oxide: potential roles in tubuloglomerular feedback and adaptation ' (2006 ) 291 Am. J. Physiol. Renal Physiol. : F1078 -1080.

    • Search Google Scholar
  • Vallon V, Huang DY, Deng A, Richter K, Blantz RC, Thomson S: Salt-sensitivity of proximal reabsorption alters macula densa salt and explains the paradoxical effect of dietary salt on glomerular filtration rate in diabetes mellitus. J. Am. Soc. Nephrol. 13, 1865–1871 (2002)

    Thomson S. , 'Salt-sensitivity of proximal reabsorption alters macula densa salt and explains the paradoxical effect of dietary salt on glomerular filtration rate in diabetes mellitus ' (2002 ) 13 J. Am. Soc. Nephrol. : 1865 -1871.

    • Search Google Scholar
  • Thomson SC, Deng A, Wead L, Richter K, Blantz RC, Vallon V: An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. J. Clin. Invest. 116, 1110–1116 (2006)

    Vallon V. , 'An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption ' (2006 ) 116 J. Clin. Invest. : 1110 -1116.

    • Search Google Scholar
  • Bouton C: Nitrosative and oxidative modulation of iron regulatory proteins. Cell. Mol. Life Sci. 55, 1043–1053 (1999)

    Bouton C. , 'Nitrosative and oxidative modulation of iron regulatory proteins ' (1999 ) 55 Cell. Mol. Life Sci. : 1043 -1053.

    • Search Google Scholar
  • Cooper CE: Nitric oxide and iron proteins. Biochim. Biophys. Acta. 1411, 290–309 (1999)

    Cooper C.E. , 'Nitric oxide and iron proteins ' (1999 ) 1411 Biochim. Biophys. Acta. : 290 -309.

    • Search Google Scholar
  • Beltran B, Mathur A, Duchen MR et al.: The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. USA 97, 14602–14607 (2000)

    Duchen M.R. , 'The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death ' (2000 ) 97 Proc. Natl. Acad. Sci. USA : 14602 -14607.

    • Search Google Scholar
  • Guo H, Wei J, Kuo PC: Nitric oxide inhibits expression of cytochrome b in endotoxin-stimulated murine macrophages. Biochem. Biophys. Res. Commun. 289, 993–997 (2001)

    Kuo P.C. , 'Nitric oxide inhibits expression of cytochrome b in endotoxin-stimulated murine macrophages ' (2001 ) 289 Biochem. Biophys. Res. Commun. : 993 -997.

    • Search Google Scholar
  • Brown GC, Borutaite V: Nitric oxide, cytochrome c and mitochondria. Biochem. Soc. Symp. 66, 17–25 (1999)

    Borutaite V. , 'Nitric oxide, cytochrome c and mitochondria ' (1999 ) 66 Biochem. Soc. Symp. : 17 -25.

    • Search Google Scholar
  • Beltran B, Quintero M, Garcia-Zaragoza E, O’Connor E, Splugues JV, Moncada S: Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fasd signaling. Proc. Natl. Acad. Sci. USA 99, 8892–8897 (2002)

    Moncada S. , 'Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fasd signaling ' (2002 ) 99 Proc. Natl. Acad. Sci. USA : 8892 -8897.

    • Search Google Scholar
  • Ho KP, Xaio DS, Ke Y, Qian ZM: Exercise decreases cytosolic aconitase activity in the liver, spleen, and bone marrow in rats. Biochem. Biophys. Res. Commun. 282, 264–267 (2001)

    Qian Z.M. , 'Exercise decreases cytosolic aconitase activity in the liver, spleen, and bone marrow in rats ' (2001 ) 282 Biochem. Biophys. Res. Commun. : 264 -267.

    • Search Google Scholar
  • Anderson U, Leighton B, Young ME, Blomstand E, Newsholme EA: Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem. Biophys. Res. Commun. 249, 512–516 (1998)

    Newsholme E.A. , 'Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide ' (1998 ) 249 Biochem. Biophys. Res. Commun. : 512 -516.

    • Search Google Scholar
  • Moncada S, Erusalimsky JD: Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell. Biol. 3, 214–220 (2002)

    Erusalimsky J.D. , 'Does nitric oxide modulate mitochondrial energy generation and apoptosis? ' (2002 ) 3 Nat. Rev. Mol. Cell. Biol. : 214 -220.

    • Search Google Scholar
  • Welch WJ, Baumgartl H, Lubbers D, Wilcox CS: Renal oxygenation defects in the spontaneously hypertensive rat: Role of AT1 receptors. Kidney Int. 63, 202–208 (2003)

    Wilcox C.S. , 'Renal oxygenation defects in the spontaneously hypertensive rat: Role of AT1 receptors ' (2003 ) 63 Kidney Int. : 202 -208.

    • Search Google Scholar
  • Brazy PC, Klotman PE: Increased oxidative metabolism in renal tubules from spontaneously hypertensive rats. Am. J. Physiol. 257, F818–F825 (1989)

    Klotman P.E. , 'Increased oxidative metabolism in renal tubules from spontaneously hypertensive rats ' (1989 ) 257 Am. J. Physiol. : F818 -F825.

    • Search Google Scholar
  • Laycock SK, Vogel T, Forfia PR: Role of nitric oxide in the control of renal oxygen consumption and the regulation of chemical work in the kidney. Circ. Res. 82, 1263–1271 (1998)

    Forfia P.R. , 'Role of nitric oxide in the control of renal oxygen consumption and the regulation of chemical work in the kidney ' (1998 ) 82 Circ. Res. : 1263 -1271.

    • Search Google Scholar
  • Koivisto A, Pittner J, Froelich M, Persson AE: Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide. Kidney Int. 55, 2368–2375 (1999)

    Persson A.E. , 'Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide ' (1999 ) 55 Kidney Int. : 2368 -2375.

    • Search Google Scholar
  • Deng A, Miracle CM, Suarez JM, Lortie M, Satriano J, Thomson SC, Munger KA, Blantz RC: Oxygen consumption in the kidney: effects of nitric oxide synthase isoforms and angiotensin II. Kidney Int. 68, 723–730 (2005)

    Blantz R.C. , 'Oxygen consumption in the kidney: effects of nitric oxide synthase isoforms and angiotensin II ' (2005 ) 68 Kidney Int. : 723 -730.

    • Search Google Scholar
  • DeNicola L, Blantz RC, Gabbai FB: Nitric oxide and angiotensin II. Glomerular and tubular interaction in the. rat. J. Clin Invest. 89, 1248–1256 (1992)

    Gabbai F.B. , 'Nitric oxide and angiotensin II. Glomerular and tubular interaction in the. rat ' (1992 ) 89 J. Clin Invest. : 1248 -1256.

    • Search Google Scholar
  • Deng A, Miracle CM, Lortie M, Satriano J, Gabbai FB, Munger KA, Thomson SC, Blantz RC: Kidney oxygen consumption, carbonic anhydrase, and proton secretion. Am. J. Physiol. Renal Physiol. 290, F1009–1015 (2006)

    Blantz R.C. , 'Kidney oxygen consumption, carbonic anhydrase, and proton secretion ' (2006 ) 290 Am. J. Physiol. Renal Physiol. : F1009 -1015.

    • Search Google Scholar
  • Weinstein SW, Klose R, Szyjewicz J: Proximal tubular Na, Cl and HCO3 and renal oxygen consumption. Am. J. Physiol. 247, F151–157 (1984)

    Szyjewicz J. , 'Proximal tubular Na, Cl and HCO3 and renal oxygen consumption ' (1984 ) 247 Am. J. Physiol. : F151 -157.

    • Search Google Scholar
  • Aronson PS, Giebisch G: Mechanisms of chloride transport in the proximal tubule. Am. J. Physiol. 273, F179–F192 (1997)

    Giebisch G. , 'Mechanisms of chloride transport in the proximal tubule ' (1997 ) 273 Am. J. Physiol. : F179 -F192.

    • Search Google Scholar
  • Wang T, Yang CL, Abbiati T, Schull GE, Giebisch G, Aronson PS: Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule. Am. J. Physiol. 281, F288–F292 (2001)

    Aronson P.S. , 'Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule ' (2001 ) 281 Am. J. Physiol. : F288 -F292.

    • Search Google Scholar
  • Cohen JJ, Kamm DE (1981): Renal metabolism: relation to renal function. In: Brenner BM, Rector FC (Eds). The Kidney. 2nd ed., vol. 1. Philadelphia: W. B. Saunders; pp. 144–248

    Kamm D.E. , '', in The Kidney , (1981 ) -.

  • Klahr S, Hamm LL, Hammerman MR, Mandel LJ (1989): Renal Metabolism: integrated responses. In: Orloff J, Berliner RW (Eds). Handbook of Physiology (Section 8: Renal Physiology). Oxford University Press, UK.

    Mandel L.J. , '', in Handbook of Physiology (Section 8: Renal Physiology) , (1989 ) -.

  • Masaomi Nangaku: Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006)

    'Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure ' (2006 ) 17 J. Am. Soc. Nephrol. : 17 -25.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 1 0 0
Sep 2020 18 0 0
Oct 2020 9 0 0
Nov 2020 3 0 0
Dec 2020 15 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0