Authors:
M. Viru University of Tartu Institute of Sport Pedagogy and Coaching Science Tartu Estonia

Search for other papers by M. Viru in
Current site
Google Scholar
PubMed
Close
,
Anthony Hackney

Search for other papers by Anthony Hackney in
Current site
Google Scholar
PubMed
Close
,
K. Karelson University of Tartu Institute of Exercise Biology and Physiotherapy Tartu Estonia

Search for other papers by K. Karelson in
Current site
Google Scholar
PubMed
Close
,
T. Janson University of Tartu Institute of Exercise Biology and Physiotherapy Tartu Estonia

Search for other papers by T. Janson in
Current site
Google Scholar
PubMed
Close
,
M. Kuus University of Tartu Institute of Exercise Biology and Physiotherapy Tartu Estonia

Search for other papers by M. Kuus in
Current site
Google Scholar
PubMed
Close
, and
A. Viru University of Tartu Institute of Exercise Biology and Physiotherapy Tartu Estonia

Search for other papers by A. Viru in
Current site
Google Scholar
PubMed
Close
Restricted access

The purpose of this study was to explore the mechanisms for increased exercise performance in conditions of competition. Endurance trained subjects (n=14) performed incremental treadmill running to exhaustion in control laboratory conditions (non-competition) and in conditions of simulated competition to assess performance (running duration). Heart rate and respiration gases were monitored continuously through each exercise condition. Blood lactate, cortisol, growth hormone and testosterone concentrations were also determined at pre- (rest) and postexercise in each condition. Results indicated competition exercise performance was significantly increased 4.2% (+49 sec; p<0.05) as was peak VO2 response 4.4% (+2.5 ml O2·kg−1·min−1; p<0.05) versus non-competition. No significant differences were found in peak measurements of minute ventilation, respiratory exchange ratio, ventilation threshold, post-exercise lactate, heart rate, or the ventilation equivalent for O2 between the exercise conditions. In both conditions growth hormone and testosterone concentrations increased significantly in response to exercise (p<0.001), whereas cortisol responses post-exercise were significantly elevated in the competition (p<0.05) but not in the control condition (p>0.05). These findings support that in competitive situations the affective state (motivation) experienced by athletes can enhance performance in exercise events, and lead to an increased peak oxygen uptake. The magnitude of the improvement is of a substantial nature and of a level seen with some training programs. Competitive conditions also augment the cortisol response to exercise, suggesting that enhanced sympatho-adrenal system activation occur in such situations which may be one of the key “driving forces” to performance improvement.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Rosivall, László

Honorary Editor(s)-in-Chief): Monos, Emil

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

    1. Benedek, György (Szeged)
    1. Benyó, Zoltán (Budapest)
    1. Boros, Mihály (Szeged)
    1. Chernoch, László (Debrecen)
    1. Détári, László (Budapest)
    1. Hamar, János (Budapest)
    1. Hantos, Zoltán (Szeged)
    1. Hunyady, László (Budapest)
    1. Imre, Sándor (Debrecen)
    1. Jancsó, Gábor (Szeged)
    1. Karádi, Zoltán (Pécs)
    1. Kovács, László (Debrecen)
    1. Palkovits, Miklós (Budapest)
    1. Papp, Gyula (Szeged)
    1. Pavlik, Gábor (Budapest)
    1. Spät, András (Budapest)
    1. Szabó, Gyula (Szeged)
    1. Szelényi, Zoltán (Pécs)
    1. Szolcsányi, János (Pécs)
    1. Szollár, Lajos (Budapest)
    1. Szücs, Géza (Debrecen)
    1. Telegdy, Gyula (Szeged)
    1. Toldi, József (Szeged)
    1. Tósaki, Árpád (Debrecen)

International Editorial Board

    1. R. Bauer (Jena)
    1. W. Benjelloun (Rabat)
    1. A. W. Cowley Jr. (Milwaukee)
    1. D. Djuric (Belgrade)
    1. C. Fry (London)
    1. S. Greenwald (London)
    1. O. Hänninen (Kuopio)
    1. H. G. Hinghofer-Szalkay (Graz)
    1. Th. Kenner (Graz)
    1. Gy. Kunos (Richmond)
    1. M. Mahmoudian (Tehran)
    1. T. Mano (Seki, Gifu)
    1. G. Navar (New Orleans)
    1. H. Nishino (Nagoya)
    1. O. Petersen (Liverpool)
    1. U. Pohl (Münich)
    1. R. S. Reneman (Maastricht)
    1. A. Romanovsky (Phoenix)
    1. G. M. Rubanyi (Richmond)
    1. T. Sakata (Oita)
    1. A. Siddiqui (Karachi)
    1. Cs. Szabo (Beverly)
    1. E. Vicaut (Paris)
    1. N. Westerhof (Amsterdam)
    1. L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Physiologica Hungarica
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: aph@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index Expanded
  • SCOPUS

 

Acta Physiologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0231-424X (Print)
ISSN 1588-2683 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 79 1 0
Feb 2024 44 0 0
Mar 2024 48 0 0
Apr 2024 72 0 0
May 2024 37 0 0
Jun 2024 36 0 0
Jul 2024 0 0 0