View More View Less
  • 1 Sapientia — Hungarian Science University of Transylvania Faculty of Technical and Human Sciences of Tîrgu Mureş Calea Sighişoarei 1/C 547367 Corunca Romania
  • 2 Budapest University of Technology and Economics Department of Control Engineering and Information Technology Budapest Hungary
  • 3 Budapest University of Technology and Economics Department of Control Engineering and Information Technology Magyar tudósok krt. 2 H-1117 Budapest Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Computed tomography (CT) and virtual reality (VR) made it possible to create internal views of the human body without actual penetration. During the last two decades, several endoscopic diagnosis procedures have received virtual counter candidates. This paper presents an own concept of a virtual reality guided diagnostic tool, based on magnetic resonance images representing parallel cross-sections of the investigated organ. A series of image processing methods are proposed for image quality enhancement, accurate segmentation in two dimensions, and three-dimensional reconstruction of detected surfaces. These techniques provide improved accuracy in image segmentation, and thus they represent excellent support for three dimensional imaging. The implemented software system allows interactive navigation within the investigated volume, and provides several facilities to quantify important physical properties including distances, areas, and volumes.

  • Szilágyi L (2008): Novel image processing methods based on fuzzy logic. PhD thesis, BME Budapest

  • Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE T. Med. Imaging 21, 193–199 (2002)

    Moriarty T. , 'A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data ' (2002 ) 21 IEEE T. Med. Imaging : 193 -199.

    • Search Google Scholar
  • Awate SP, Whitaker RT: Nonparametric neighborhood statistics for MRI denoising. Lect. Notes Comput. Sci. 3565, 677–688 (2005)

    Whitaker R.T. , 'Nonparametric neighborhood statistics for MRI denoising ' (2005 ) 3565 Lect. Notes Comput. Sci. : 677 -688.

    • Search Google Scholar
  • Battista G, Sassi C, Schiavina R, Franceschelli A, Baglivo E, Martorana G, Canini R: Computerized tomography virtual endoscopy in evaluation of upper urinary tract tumors: initial experience. Abdom. Imaging 34, 107–112 (2009)

    Canini R. , 'Computerized tomography virtual endoscopy in evaluation of upper urinary tract tumors: initial experience ' (2009 ) 34 Abdom. Imaging : 107 -112.

    • Search Google Scholar
  • Bernhardt TM, Rapp-Bernhardt U: Virtual endoscopy of the bladder based on CT and MRI data. Abdom. Imaging 26, 325–332 (2001)

    Rapp-Bernhardt U. , 'Virtual endoscopy of the bladder based on CT and MRI data ' (2001 ) 26 Abdom. Imaging : 325 -332.

    • Search Google Scholar
  • Bezdek JC (1981): Pattern recognition with fuzzy objective function algorithms. Plenum, New York, NY

    Bezdek J.C. , '', in Pattern recognition with fuzzy objective function algorithms , (1981 ) -.

  • Boctor EM, Fichtinger G, Yeung A, Awad M, Taylor RH, Choti MA: Robotic strain imaging for monitoring thermal ablation in liver. Lect. Notes Comput. Sci. 3217, 81–88 (2004)

    Choti M.A. , 'Robotic strain imaging for monitoring thermal ablation in liver ' (2004 ) 3217 Lect. Notes Comput. Sci. : 81 -88.

    • Search Google Scholar
  • Bookstein FL: Shape and the information in medical images: a decade of the morphometric synthesis. Comput. Vis. Image Und. 66, 97–118 (1997)

    Bookstein F.L. , 'Shape and the information in medical images: a decade of the morphometric synthesis ' (1997 ) 66 Comput. Vis. Image Und. : 97 -118.

    • Search Google Scholar
  • Boor S, Maurer J, Mann W, Stoeter P: Virtual endoscopy of the inner ear and the auditory canal. Neuroradiology 42, 543–547 (2000)

    Stoeter P. , 'Virtual endoscopy of the inner ear and the auditory canal ' (2000 ) 42 Neuroradiology : 543 -547.

    • Search Google Scholar
  • Bosch JG, Mitchell SC, Lelieveldt BPF, Nijland F, Kamp O, Sonka M, Reiber JHC: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE T. Med. Imaging 21, 1374–1383 (2002)

    Reiber J.H.C. , 'Automatic segmentation of echocardiographic sequences by active appearance motion models ' (2002 ) 21 IEEE T. Med. Imaging : 1374 -1383.

    • Search Google Scholar
  • Cai W, Chen S, Zhang DQ: Fast and robust fuzzy c-means algorithms incorporating local information for image segmentation. Pattern Recogn. 40, 825–838 (2007)

    Zhang D.Q. , 'Fast and robust fuzzy c-means algorithms incorporating local information for image segmentation ' (2007 ) 40 Pattern Recogn. : 825 -838.

    • Search Google Scholar
  • Carrascosa P, Capuñay C, Mariano B, López EM, Carrascosa J, Borghi M, Sueldo C, Papier S: Virtual hysteroscopy by multidetector computed tomography. Abdom. Imaging 33, 381–387 (2008)

    Papier S. , 'Virtual hysteroscopy by multidetector computed tomography ' (2008 ) 33 Abdom. Imaging : 381 -387.

    • Search Google Scholar
  • Chan TF, Vese LA: Active contours without edges. IEEE T. Image Process. 10, 266–277 (2001)

    Vese L.A. , 'Active contours without edges ' (2001 ) 10 IEEE T. Image Process. : 266 -277.

  • Cootes TF, Taylor CJ, Cooper DH, Graham J: Active shape models — their training and application. Comput. Vis. Image Und. 61, 38–59 (1995)

    Graham J. , 'Active shape models — their training and application ' (1995 ) 61 Comput. Vis. Image Und. : 38 -59.

    • Search Google Scholar
  • Cootes TF, Edwards GJ, Taylor CJ: Active appearance models. IEEE T. Pattern. Anal. Machine Intell. 23, 681–685 (2001)

    Taylor C.J. , 'Active appearance models ' (2001 ) 23 IEEE T. Pattern. Anal. Machine Intell. : 681 -685.

    • Search Google Scholar
  • Fan JL, Zhen WZ, Xie WX: Suppressed fuzzy c-means clustering algorithm. Pattern Recogn. Lett. 24, 1607–1612 (2003)

    Xie W.X. , 'Suppressed fuzzy c-means clustering algorithm ' (2003 ) 24 Pattern Recogn. Lett. : 1607 -1612.

    • Search Google Scholar
  • Fichtinger G, Fiene JP, Kennedy CW, Kronreif G, Iordăchiţă II, Song DY, Burdette EC, Kanzanzides P: Robotic assistance for ultrasound-guided prostate brachytherapy. Med. Image Anal. 12, 535–545 (2008)

    Kanzanzides P. , 'Robotic assistance for ultrasound-guided prostate brachytherapy ' (2008 ) 12 Med. Image Anal. : 535 -545.

    • Search Google Scholar
  • Haker S, Angenent S, Tannenbaum A, Kikinis R: Non-distorting flattening for virtual colonoscopy. Lect. Notes Comput. Sci. 1935, 358–366 (2000)

    Kikinis R. , 'Non-distorting flattening for virtual colonoscopy ' (2000 ) 1935 Lect. Notes Comput. Sci. : 358 -366.

    • Search Google Scholar
  • Han P, Pirsig W, Ilgen F, Görlich J, Sokiranski R: Virtual endoscopy of the nasal cavity in comparison with fiberoptic endoscopy. Europ. Arch. Oto-Rhino-Laryng. 257, 578–583 (2000)

    Sokiranski R. , 'Virtual endoscopy of the nasal cavity in comparison with fiberoptic endoscopy ' (2000 ) 257 Europ. Arch. Oto-Rhino-Laryng. : 578 -583.

    • Search Google Scholar
  • Haponik EF, Aquino SL, Vining DJ: Virtual bronchoscopy. Clin. Chest Med. 20, 201–217 (1999)

    Vining D.J. , 'Virtual bronchoscopy ' (1999 ) 20 Clin. Chest Med. : 201 -217.

  • Ichihara S, Ando M, Maksimenko A, Yuasa T, Sugiyama H, Hashimoto E, Yamasaki K, Mori K, Arai Y, Endo T: 3-D reconstruction and virtual ductoscopy of high grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT. Windows Arch. 452, 41–47 (2008)

    Endo T. , '3-D reconstruction and virtual ductoscopy of high grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT ' (2008 ) 452 Windows Arch. : 41 -47.

    • Search Google Scholar
  • Inamoto K, Kouzai K, Ueeda T, Marukawa T: CT virtual endoscopy of the stomach: comparison study with gastric fiberscopy. Abdom. Imaging 30, 473–479 (2005)

    Marukawa T. , 'CT virtual endoscopy of the stomach: comparison study with gastric fiberscopy ' (2005 ) 30 Abdom. Imaging : 473 -479.

    • Search Google Scholar
  • Internet Brain Segmentation Repository. Available at: http://www.cma.mgh.harvard.edu/ibsr

  • Kass M, Witkin A, Terzopoulos D: Snakes: active contour models. Int. J. Comput. Vision 1, 321–331 (1987)

    Terzopoulos D. , 'Snakes: active contour models ' (1987 ) 1 Int. J. Comput. Vision : 321 -331.

    • Search Google Scholar
  • Koloszár J, Szirmay-Kalos L, Tarján Zs, Jocha D: Shape Based Computer Aided Diagnosis and Automated Navigation in Virtual Colonoscopy. Spring Conference on Computer Graphics (2006)

  • Krieger A, Csoma Cs, Iordăchiţă II, Guion P, Singh AK, Fichtinger G, Whitcomb LL: Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system. Lect. Notes Comput. Sci. 4792, 59–67 (2007)

    Whitcomb L.L. , 'Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system ' (2007 ) 4792 Lect. Notes Comput. Sci. : 59 -67.

    • Search Google Scholar
  • Krishnapuram R, Keller JM: A possibilistic approach to clustering. IEEE T. Fuzzy Syst. 1, 98–110 (1993)

    Keller J.M. , 'A possibilistic approach to clustering ' (1993 ) 1 IEEE T. Fuzzy Syst. : 98 -110.

    • Search Google Scholar
  • Li X, Li LH, Lu HB, Liang ZG: Partial volume segmentation of brain magnetic resonace images based on maximum a posteriori probability. Med. Phys. 32, 2337–2345 (2005)

    Liang Z.G. , 'Partial volume segmentation of brain magnetic resonace images based on maximum a posteriori probability ' (2005 ) 32 Med. Phys. : 2337 -2345.

    • Search Google Scholar
  • Lorensen WE, Cline HE: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987)

    Cline H.E. , 'Marching cubes: a high resolution 3D surface construction algorithm ' (1987 ) 21 Comput. Graph. : 163 -169.

    • Search Google Scholar
  • McInerney T, Terzopoulos D: Deformable models in medical image analysis: a survey. Med. Image Anal. 1, 91–108 (1996)

    Terzopoulos D. , 'Deformable models in medical image analysis: a survey ' (1996 ) 1 Med. Image Anal. : 91 -108.

    • Search Google Scholar
  • Men S, Ecevit MC, Topçu I, Kabakçi N, Erdağ TK, Sütay S: Diagnostic contribution of virtual endoscopy in diseases of the upper airways. J. Digit. Imaging 20, 67–71 (2007)

    Sütay S. , 'Diagnostic contribution of virtual endoscopy in diseases of the upper airways ' (2007 ) 20 J. Digit. Imaging : 67 -71.

    • Search Google Scholar
  • Moorthy K, Munz Y, Orchard TR, Gould S, Rockall T, Darzi A: An innovative method for the assessment of skills in lower gastrointestinal endoscopy. Surg. Endosc. 18, 1613–1619 (2004)

    Darzi A. , 'An innovative method for the assessment of skills in lower gastrointestinal endoscopy ' (2004 ) 18 Surg. Endosc. : 1613 -1619.

    • Search Google Scholar
  • Morrin MM, Farrell RJ, Raptopoulos V, McGee JB, Bleday R, Kruskal JB: Role of virtual computed tomographic colonography in patients with colorectal cancers and obstructing colorectal lesions. Dis. Colon Rectum 43, 303–311 (2000)

    Kruskal J.B. , 'Role of virtual computed tomographic colonography in patients with colorectal cancers and obstructing colorectal lesions ' (2000 ) 43 Dis. Colon Rectum : 303 -311.

    • Search Google Scholar
  • Mumford D, Shah J: Optimal approximations of piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Shah J. , 'Optimal approximations of piecewise smooth functions and associated variational problems ' (1989 ) 42 Commun. Pure Appl. Math. : 577 -685.

    • Search Google Scholar
  • Nagy L, Benyó B: Filtering and contrast enhancement on subtracted direct digital angiograms. 26th Ann. Int. Conf. IEEE EMBS 1533–1536 (2004)

  • Neri E, Bonanomi G, Vignali C, Cioni R, Ferrari M, Petruzzi P, Bartolozzi C: Spiral CT virtual endoscopy of abdominal arteries: clinical applications. Abdom. Imaging 25, 59–61 (2000)

    Bartolozzi C. , 'Spiral CT virtual endoscopy of abdominal arteries: clinical applications ' (2000 ) 25 Abdom. Imaging : 59 -61.

    • Search Google Scholar
  • Nielson GM: On marching cubes. IEEE T. Vis. Comput. Graph. 9, 283–297 (2003)

    Nielson G.M. , 'On marching cubes ' (2003 ) 9 IEEE T. Vis. Comput. Graph. : 283 -297.

  • Osher S, Sethian JA: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Sethian J.A. , 'Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations ' (1988 ) 79 J. Comput. Phys. : 12 -49.

    • Search Google Scholar
  • Pal NR, Pal K, Keller JM, Bezdek JC: A possibilistic fuzzy c-means clustering algorithms. IEEE T. Fuzzy Syst. 13, 517–530 (2005)

    Bezdek J.C. , 'A possibilistic fuzzy c-means clustering algorithms ' (2005 ) 13 IEEE T. Fuzzy Syst. : 517 -530.

    • Search Google Scholar
  • Pham DL, Prince JL: Adaptive fuzzy segmentation of magnetic resonance images. IEEE T. Med. Imaging 18, 737–752 (1999)

    Prince J.L. , 'Adaptive fuzzy segmentation of magnetic resonance images ' (1999 ) 18 IEEE T. Med. Imaging : 737 -752.

    • Search Google Scholar
  • Rohde V, Krombach GA, Struffert T, Gilsbach JM: Virtual MRI endoscopy: detection of anomalies of the ventricular anatomy and its possible role as a presurgical planning tool for endoscopic third ventriculostomy. Acta Neurochir. 143, 1085–1091 (2001)

    Gilsbach J.M. , 'Virtual MRI endoscopy: detection of anomalies of the ventricular anatomy and its possible role as a presurgical planning tool for endoscopic third ventriculostomy ' (2001 ) 143 Acta Neurochir. : 1085 -1091.

    • Search Google Scholar
  • Rosseland LA, Bentsen G, Hopp E, Refsum S, Breivik H: Monitoring urinary bladder volume and detecting post-operative urinary retention in children with an ultrasound scanner. Acta Anaesthesiol. Scand. 49, 1456–1459 (2005)

    Breivik H. , 'Monitoring urinary bladder volume and detecting post-operative urinary retention in children with an ultrasound scanner ' (2005 ) 49 Acta Anaesthesiol. Scand. : 1456 -1459.

    • Search Google Scholar
  • Ruan S, Moretti B, Fadili J, Bloyet D: Fuzzy Markovian segmentation in application of magnetic resonance images. Comput. Vis. Image Und. 85, 54–69 (2002)

    Bloyet D. , 'Fuzzy Markovian segmentation in application of magnetic resonance images ' (2002 ) 85 Comput. Vis. Image Und. : 54 -69.

    • Search Google Scholar
  • Şahin G, Dogan BE, Demirtaş M: Virtual MR arthroscopy of the wrist joint: a new intraarticular perspective. Skeletal Radiol. 33, 9–14 (2004)

    Demirtaş M. , 'Virtual MR arthroscopy of the wrist joint: a new intraarticular perspective ' (2004 ) 33 Skeletal Radiol. : 9 -14.

    • Search Google Scholar
  • Sata N, Kurihara K, Koizumi M, Tsukahara M, Yoshizawa K, Nagai H: CT virtual pancreatoscopy: a new method for diagnosing intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Abdom. Imaging 31, 326–331 (2006)

    Nagai H. , 'CT virtual pancreatoscopy: a new method for diagnosing intraductal papillary mucinous neoplasm (IPMN) of the pancreas ' (2006 ) 31 Abdom. Imaging : 326 -331.

    • Search Google Scholar
  • Sata N, Endo K, Shimura K, Koizumi M, Nagai H: A new 3D-diagnosis strategy for duodenal malignant lesions using multi-detector row CT, CT virtual duodenoscopy, duodenography and 3D multi-cholangiography. Abdom. Imaging 32, 66–72 (2007)

    Nagai H. , 'A new 3D-diagnosis strategy for duodenal malignant lesions using multi-detector row CT, CT virtual duodenoscopy, duodenography and 3D multi-cholangiography ' (2007 ) 32 Abdom. Imaging : 66 -72.

    • Search Google Scholar
  • Seymour NE: Virtual reality in general surgical training. Europ. Surg. 37, 298–303 (2005)

    Seymour N.E. , 'Virtual reality in general surgical training ' (2005 ) 37 Europ. Surg. : 298 -303.

    • Search Google Scholar
  • Siyal MY, Yu L: An intelligent modified fuzzy c-means based algorithm for bias field estimation and segmentation of brain MRI. Pattern Recogn. Lett. 26, 2052–2062 (2005)

    Yu L. , 'An intelligent modified fuzzy c-means based algorithm for bias field estimation and segmentation of brain MRI ' (2005 ) 26 Pattern Recogn. Lett. : 2052 -2062.

    • Search Google Scholar
  • Steinhaus H: Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci. C1 III., IV, 801–804 (1956)

    Steinhaus H. , 'Sur la division des corp materiels en parties ' (1956 ) IV Bull. Acad. Polon. Sci. C1 III. : 801 -804.

    • Search Google Scholar
  • Suri JS, Liu K, Reden L, Laxminarayan S: A review of MR vascular image processing algorithms: skeleton versus nonskeleton approaches. IEEE Trans. Inform. Techn. Biomed, 6, 338–350 (2002)

    Laxminarayan S. , 'A review of MR vascular image processing algorithms: skeleton versus nonskeleton approaches ' (2002 ) 6 IEEE Trans. Inform. Techn. Biomed : 338 -350.

    • Search Google Scholar
  • Suri JS, Liu K, Singh S, Laxminarayan SN, Zeng X, Reden L: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE T. Inf. Technol. Biomed. 6, 8–28 (2002)

    Reden L. , 'Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review ' (2002 ) 6 IEEE T. Inf. Technol. Biomed. : 8 -28.

    • Search Google Scholar
  • Szilágyi L, Benyó Z, Szilágyi SM, Adam HS: MR brain image segmentation using an enhanced fuzzy c-means algorithm. 25th Ann. Int. Conf. IEEE EMBS 724–726 (2003).

  • Szilágyi SM, Szilágyi L, Benyó Z: Volumetric analysis of the heart using echocardiography. Lect. Notes Comput. Sci. 4466, 81–90 (2007)

    Benyó Z. , 'Volumetric analysis of the heart using echocardiography ' (2007 ) 4466 Lect. Notes Comput. Sci. : 81 -90.

    • Search Google Scholar
  • Szilágyi L, Szilágyi SM, Benyó Z: A modified fuzzy c-means algorithm for MR brain image segmentation. Lect. Notes Comput. Sci. 4633, 855–866 (2007)

    Benyó Z. , 'A modified fuzzy c-means algorithm for MR brain image segmentation ' (2007 ) 4633 Lect. Notes Comput. Sci. : 855 -866.

    • Search Google Scholar
  • Szilágyi L, Szilágyi SM, Dávid L, Benyó Z: Multi-stage FCM-based intensity inhomogeneity correction for MR brain image segmentation. Lect. Notes Comput. Sci. 5164, 527–636 (2008)

    Benyó Z. , 'Multi-stage FCM-based intensity inhomogeneity correction for MR brain image segmentation ' (2008 ) 5164 Lect. Notes Comput. Sci. : 527 -636.

    • Search Google Scholar
  • Szilágyi L, Szilágyi SM, Benyó Z: A unified approach to c-means clustering models. IEEE Conf. Fuzzy Syst. (FUZZ-IEEE) 456–461 (2009)

  • Vovk U, Pernuš F, Likar B: A review of methods for correction of intensity inhomogeneity in MRI. IEEE T. Med. Imaging 26, 405–421 (2007)

    Likar B. , 'A review of methods for correction of intensity inhomogeneity in MRI ' (2007 ) 26 IEEE T. Med. Imaging : 405 -421.

    • Search Google Scholar
  • Wood BJ, Razavi P: Virtual endoscopy: a promising new technology. Am. Fam. Physician 66, 107–112 (2002)

    Razavi P. , 'Virtual endoscopy: a promising new technology ' (2002 ) 66 Am. Fam. Physician : 107 -112.

    • Search Google Scholar
  • Xu C, Prince JL: Snakes, shapes, and gradient vector flow. IEEE T. Image Process. 7, 359–369 (1998)

    Prince J.L. , 'Snakes, shapes, and gradient vector flow ' (1998 ) 7 IEEE T. Image Process. : 359 -369.

    • Search Google Scholar
  • Zadeh LA: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)

    Zadeh L.A. , '' (1965 ) 8 Fuzzy sets. Inform. Contr. : 338 -353.

  • Zhan Y, Shen DG, Zeng JC, Sun L, Fichtinger G, Moul JW, Davatzikos C: Targeted prostate biopsy using statistical image analysis. IEEE T. Med. Imaging 26, 779–788 (2007)

    Davatzikos C. , 'Targeted prostate biopsy using statistical image analysis ' (2007 ) 26 IEEE T. Med. Imaging : 779 -788.

    • Search Google Scholar
  • Zhang Y, Brady M, Smith S: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE T. Med. Imaging 20, 45–57 (2001)

    Smith S. , 'Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm ' (2001 ) 20 IEEE T. Med. Imaging : 45 -57.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 9 3 0
Dec 2020 8 0 0
Jan 2021 10 0 0
Feb 2021 15 0 0
Mar 2021 9 0 0
Apr 2021 6 0 0
May 2021 0 0 0