View More View Less
  • 1 Hokkaido University Graduate School of Education Sapporo Japan
  • 2 Hokkaido University Department of Human Developmental Sciences, Faculty of Education Sapporo Japan
  • 3 Hokkaido University Department of Human Development Science, Faculty of Education Kita-11, Nishi-7, Kita-ku Sapporo 060-0811 Japan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

To determine that whether arterial carbon dioxide (PaCO2) affects ventilation (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\dot V$ \end{document}E) during recovery from impulse-like exercises of various intensities, subjects performed four impulse-like tests with different workloads. Each test consisted of a 20-sec impulse-like exercise at 80 rpm and 60-min recovery. Blood samples were collected at rest and during recovery to measure blood ions and gases. \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\dot V$ \end{document}E was measured continuously during rest, exercise and recovery periods. A significant curvilinear relationship was observed between \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\dot V$ \end{document}E and pH during recovery from the 300- and 400-watt tests in all subjects. \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\dot V$ \end{document}E was elevated during recovery from the 100-watt test despite no change in any of the humoral factors. Arterialized carbon dioxide (PaCO2) kinetics showed fluctuation, being increased at 1 min and decreased at 5 min during recovery, and this fluctuation was more enhanced with increase in exercise intensity. There was a significant relationship between \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\dot V$ \end{document}E and PaCO2 during recovery from the 300- and 400-watt tests in all subjects. The results of the present study demonstrate that pH and neural factors drive \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\dot V$ \end{document}E during recovery from impulse-like exercise and that fluctuation in PaCO2 controls \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\dot V$ \end{document}E as a feedback loop and this feedback function is more enhanced as the work intensity increases

  • Afroundeh R, Arimitsu T, Yamanaka R, Lian CS, Yunoki T, Yano T: Effects of humoral factors on ventilation kinetics during recovery after impulse-like exercise. Acta Physiol. Hung. 99, 185–193 (2012)

    Yano T. , 'Effects of humoral factors on ventilation kinetics during recovery after impulse-like exercise ' (2012 ) 99 Acta Physiol. Hung : 185 -193.

    • Search Google Scholar
  • Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA: Groups III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J. Appl. Physiol. 109, 966–976 (2010)

    Dempsey J.A. , 'Groups III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans ' (2010 ) 109 J. Appl. Physiol : 966 -976.

    • Search Google Scholar
  • Clement ID, Bascom DA, Conway J, Dorrington KL, O’Connor DF, Painter R, Paterson DJ, Robbins PA: An assessment of central-peripheral ventilatory chemoreflex interaction in humans. Respir. Physiol. 88, 87–100 (1992)

    Robbins P.A. , 'An assessment of central-peripheral ventilatory chemoreflex interaction in humans ' (1992 ) 88 Respir. Physiol : 87 -100.

    • Search Google Scholar
  • Clement ID, Pandit JJ, Bascom DA, Robbins PA: Ventilatory chemoreflexes at rest following a brief period of heavy exercise in man. J. Physiol. 495, 875–884 (1996)

    Robbins P.A. , 'Ventilatory chemoreflexes at rest following a brief period of heavy exercise in man ' (1996 ) 495 J. Physiol : 875 -884.

    • Search Google Scholar
  • Cunningham DJC, Robbins PA, Wolff CB (1986): Integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH. In: Fishman AP, Cherniack NS, Widdicombe JG: Handbook of Physiology, vol. II. American Physiological Society, Bethesda, pp. 475–528

  • Dempsey JA: Challenges for future research in exercise physiology as applied to the respiratory system. Exerc. Sport. Sci. Rev. 34, 92–98 (2006)

    Dempsey J.A. , 'Challenges for future research in exercise physiology as applied to the respiratory system ' (2006 ) 34 Exerc. Sport. Sci. Rev : 92 -98.

    • Search Google Scholar
  • Duffin J: Role of acid-base balance in the chemoreflex control of breathing. J. Appl. Physiol. 99, 2255–2265 (2005)

    Duffin J. , 'Role of acid-base balance in the chemoreflex control of breathing ' (2005 ) 99 J. Appl. Physiol : 2255 -2265.

    • Search Google Scholar
  • Duffin J, Mophan RM, Vasiliou P, Stephenson R, Mahamed S: A model of the chemoreflex control of breathing in humans: model parameters measurement. Respir. Physiol. 120, 13–26 (2000)

    Mahamed S. , 'A model of the chemoreflex control of breathing in humans: model parameters measurement ' (2000 ) 120 Respir. Physiol : 13 -26.

    • Search Google Scholar
  • Eldridge FL: Central neural stimulation of respiration in unanesthetized decerebrate cats. J. Appl. Physiol. 40, 23–28 (1976)

    Eldridge F.L. , 'Central neural stimulation of respiration in unanesthetized decerebrate cats ' (1976 ) 40 J. Appl. Physiol : 23 -28.

    • Search Google Scholar
  • Eldridge FL, Gill-kumar P: Lack of effect of vagal afferent input on central neural respiratory afterdischarge. J. Appl. Physiol. 45, 339–344 (1978)

    Gill-kumar P. , 'Lack of effect of vagal afferent input on central neural respiratory afterdischarge ' (1978 ) 45 J. Appl. Physiol : 339 -344.

    • Search Google Scholar
  • Eldridge FL, Gill-kumar P: Central neural respiratory drive and afterdischarge. Respir. Physiol. 40, 49–63 (1980)

    Gill-kumar P. , 'Central neural respiratory drive and afterdischarge ' (1980 ) 40 Respir. Physiol : 49 -63.

    • Search Google Scholar
  • Eldridge FL, Millhorn DE, Kiley JP, Waldrop TG: Stimulation by central command of locomotion, respiration and circulation during exercise. Respir. Physiol. 59, 313–337 (1985)

    Waldrop T.G. , 'Stimulation by central command of locomotion, respiration and circulation during exercise ' (1985 ) 59 Respir. Physiol : 313 -337.

    • Search Google Scholar
  • Eyzaquirre C, Zapata P: Perspectives in carotid body research. J. Appl. Physiol. 57, 931–957 (1984)

    Zapata P. , 'Perspectives in carotid body research ' (1984 ) 57 J. Appl. Physiol : 931 -957.

  • Haouzi P, Chenuel B, Chalon B: Effects of body position on the ventilatory response following an impulse exercise in humans. J. Appl. Physiol. 92, 1423–1433 (2002)

    Chalon B. , 'Effects of body position on the ventilatory response following an impulse exercise in humans ' (2002 ) 92 J. Appl. Physiol : 1423 -1433.

    • Search Google Scholar
  • Kaufman MP, Longhurst JC, Rybicki KJ, Wallach JH, Mitchhell JH: Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J. Appl. Physiol. 55, 105–112 (1983)

    Mitchhell J.H. , 'Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats ' (1983 ) 55 J. Appl. Physiol : 105 -112.

    • Search Google Scholar
  • Kowalchuk JM, Heigenhauser GJ, Lindinger MI, Sutton JR, Jones NL: Factors influencing hydrogen ion concentration in muscle after intense exercise. J. Appl. Physiol. 65, 2080–2089 (1988)

    Jones N.L. , 'Factors influencing hydrogen ion concentration in muscle after intense exercise ' (1988 ) 65 J. Appl. Physiol : 2080 -2089.

    • Search Google Scholar
  • Meyer T, Faude O, Scharhag J, Urhausen A, Kindermann W: Is lactic acidosis a cause of exercise-induced hyperventilation at the respiratory compensation point? Br. J. Sports. Med. 38, 622–625 (2004)

    Kindermann W. , 'Is lactic acidosis a cause of exercise-induced hyperventilation at the respiratory compensation point? ' (2004 ) 38 Br. J. Sports. Med : 622 -625.

    • Search Google Scholar
  • Oren A, Wasserman K, Davis JA, Whipp BJ: Effect of CO2 set point on ventilatory response to exercise. J. Appl. Physiol. 51, 185–189 (1981)

    Whipp B.J. , 'Effect of CO2 set point on ventilatory response to exercise ' (1981 ) 51 J. Appl. Physiol : 185 -189.

    • Search Google Scholar
  • Peronnet F, Aguilaniu B: Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: A critical reappraisal. Respir. Physiol. Neurobiol. 150, 4–18 (2006)

    Aguilaniu B. , 'Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: A critical reappraisal ' (2006 ) 150 Respir. Physiol. Neurobiol : 4 -18.

    • Search Google Scholar
  • Peronnet F, Meyer T, Aguilaniu B, Juneau CE, Faude O, Kindermann W: Bicarbonate infusion and pH clamp moderately reduce hyperventilation during ramp exercise in humans. J. Appl. Physiol. 102, 426–428 (2007)

    Kindermann W. , 'Bicarbonate infusion and pH clamp moderately reduce hyperventilation during ramp exercise in humans ' (2007 ) 102 J. Appl. Physiol : 426 -428.

    • Search Google Scholar
  • Poon CS: Evolving paradigms in H+ control of breathing: From homeostatic regulation to homeostatic competition. Respir. Physiol. Neurobiol. 179, 122–126 (2011)

    Poon C.S. , 'Evolving paradigms in H+ control of breathing: From homeostatic regulation to homeostatic competition ' (2011 ) 179 Respir. Physiol. Neurobiol : 122 -126.

    • Search Google Scholar
  • Ramonatxo M, Mercier J, Prefaut C: Relationship between aerobic physical fitness and ventilatory control during exercise in young swimmers. Respir. Physiol. 78, 345–356 (1989)

    Prefaut C. , 'Relationship between aerobic physical fitness and ventilatory control during exercise in young swimmers ' (1989 ) 78 Respir. Physiol : 345 -356.

    • Search Google Scholar
  • Rausch SM, Whipp BJ, Wasserman K, Huszczuk A: Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J. Physiol. 444, 567–578 (1991)

    Huszczuk A. , 'Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans ' (1991 ) 444 J. Physiol : 567 -578.

    • Search Google Scholar
  • Salvadori A, Fanari P, Tovaglieri I, Giacomotti E, Nibbio F, Belardi F, Longhini E: Ventilation and it’s control during incremental exercise in obesity. Respiration 75, 26–33 (2006)

    Longhini E. , 'Ventilation and it’s control during incremental exercise in obesity ' (2006 ) 75 Respiration : 26 -33.

    • Search Google Scholar
  • Stringer W, Casaburi R, Wasserman K: Acid-base regulation during exercise and recovery in humans. J. Appl. Physiol. 72, 954–961 (1992)

    Wasserman K. , 'Acid-base regulation during exercise and recovery in humans ' (1992 ) 72 J. Appl. Physiol : 954 -961.

    • Search Google Scholar
  • Ward SA: Control of the exercise hyperpnoea in humans: a modeling perspective. Respir. Physiol. 122, 149–166 (2000)

    Ward S.A. , 'Control of the exercise hyperpnoea in humans: a modeling perspective ' (2000 ) 122 Respir. Physiol : 149 -166.

    • Search Google Scholar
  • Ward SA: Ventilatory control in humans: constraints and limitations. Exp. Physiol. 92, 357–366 (2007)

    Ward S.A. , 'Ventilatory control in humans: constraints and limitations ' (2007 ) 92 Exp. Physiol : 357 -366.

    • Search Google Scholar
  • Wasserman K, Beaver WL, Whipp BJ: Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 81, 14–30 (1990)

    Whipp B.J. , 'Gas exchange theory and the lactic acidosis^(anaerobic) threshold ' (1990 ) 81 Circulation : 14 -30.

    • Search Google Scholar
  • Wasserman K, Van Kessel AL, Burton GG: Interaction of physiological mechanisms during exercise. J. Appl. Physiol. 22, 71–85 (1967)

    Burton G.G. , 'Interaction of physiological mechanisms during exercise ' (1967 ) 22 J. Appl. Physiol : 71 -85.

    • Search Google Scholar
  • Wasserman K, Whipp BJ, Koyal SN, Beaver WL: Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 35, 236–243 (1973)

    Beaver W.L. , 'Anaerobic threshold and respiratory gas exchange during exercise ' (1973 ) 35 J. Appl. Physiol : 236 -243.

    • Search Google Scholar
  • Wasserman K, Whipp BJ, Koyal SN, Cleary MG: Effect of carotid body resection on ventilatory and acid-base control during exercise. J. Appl. Physiol. 39, 354–358 (1975)

    Cleary M.G. , 'Effect of carotid body resection on ventilatory and acid-base control during exercise ' (1975 ) 39 J. Appl. Physiol : 354 -358.

    • Search Google Scholar
  • Yamanaka R, Yunoki T, Arimitsu T, Lian CS, Yano T: Effects of sodium bicarbonate ingestion on EMG, effort sense and ventilatory response during intense exercise and subsequent active recovery. Eur. J. Appl. Physiol. 111, 851–858 (2011)

    Yano T. , 'Effects of sodium bicarbonate ingestion on EMG, effort sense and ventilatory response during intense exercise and subsequent active recovery ' (2011 ) 111 Eur. J. Appl. Physiol : 851 -858.

    • Search Google Scholar
  • Yoshida T, Chida M, Ichioka M, Makiguchi K, Eguchi J, Udo M: Relationship between ventilation and arterial potassium concentration during incremental exercise and recovery. Eur. J. Appl. Physiol. 61, 193–196 (1990)

    Udo M. , 'Relationship between ventilation and arterial potassium concentration during incremental exercise and recovery ' (1990 ) 61 Eur. J. Appl. Physiol : 193 -196.

    • Search Google Scholar
  • Zavorsky GS, Cao J, Mayo NE, Gabbay R, Murias JM: Arterial versus capillary blood gases: a meta-analysis. Respir. Physiol. Neurobiol. 155, 268–279 (2007)

    Murias J.M. , 'Arterial versus capillary blood gases: a meta-analysis ' (2007 ) 155 Respir. Physiol. Neurobiol : 268 -279.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 2 1
Jul 2020 0 1 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 3 0 0
Nov 2020 0 8 1
Dec 2020 0 0 0