View More View Less
  • 1 Plant Protection Institute, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 102, Hungary
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Our current knowledge regarding primary structure, synthesis, release, receptor-binding, structure-activity relationship and mode of action of insect neuropeptides has increased dramatically during the past decade. Thanks to the development of insect neuroendocrinology -in parallel to this- an even increasing need for modern, yet environmentally sound strategies of plant protection has arisen, becoming a driving force for insect physiologists to concentrate their efforts to combat pests more efficiently. The ultimate aim of these researchers is, however, not the total eradication of harmful insects, but rather, selective targeting by using species- or group-specific control strategies which can only be achieved by taking note of recent results in insect physiology, endocrinology, biochemistry and ecology. The rationale behind this approach is, that, since neuropeptides regulate key biological processes, these“special agents”or their synthetic analogues, mimetics, agonists or antagonists may be effective tools in combating insect pests in an environmentally more sound manner than with conventional pesticides. In this review, taking into account possible practical aspects, some representative insect neuropeptides/groups have been selected, which may be important due to their characteristic structure and/or physiological action, and could be used for the design of novel, safe and selective compounds to control pests.

  • Borovsky, D., Powell, C. R., Dawson, W. O., Shivprasad, S., Lewandowski, D. J., De Bondt, H. L., De Ranter, C. and De Loof, A. (1998): Trypsin modulating oostatic factor (TMOF): a new biorational insecticide against mosquitoes. In: Konopiŝska, D., Goldsworthy, G., Nachman, R. J., Nawrot, J., Orchard, I. and Rosiŝski, G. (eds): Insects: Chemical, Physiological and Environmental Aspects 1997. University of Wroclaw, Wroclaw, pp. 131-140.

    Trypsin modulating oostatic factor (TMOF): a new biorational insecticide against mosquitoes , () 131 -140.

    • Search Google Scholar
  • Borovsky, D. (2003): Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J. Exp. Biol.20, 3869-3875.

    'Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control ' () 20 J. Exp. Biol. : 3869 -3875.

    • Search Google Scholar
  • Butenandt, A. and Karlson, P. (1954): Über die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form. Z. Naturforsch.9b, 389-391.

    'Über die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form ' () 9b Z. Naturforsch. : 389 -391.

    • Search Google Scholar
  • Choi, M.-Y., Fuerst, E.-J., Rafaeli, A. and Jurenka, R. (2003): Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea.Proc. Natl. Acad. Sci. USA100, 9721-9726.

    'Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea ' () 100 Proc. Natl. Acad. Sci. USA : 9721 -9726.

    • Search Google Scholar
  • Coast, G. M. (1998): Insect diuretic peptides: Structures, evolution and actions. Amer. Zool.38, 442-449.

    'Insect diuretic peptides: Structures, evolution and actions ' () 38 Amer. Zool. : 442 -449.

    • Search Google Scholar
  • De Loof, A., Baggerman, G., Breuer, M., Claeys, I., Cerstiaens, A., Clynen, E., Janssen T., Schoofs, L. and Vanden Broeck, J. (2001): Gonadotropins in insects: An overview. Arch. Insect Biochem. Physiol.47, 129-138.

    'Gonadotropins in insects: An overview ' () 47 Arch. Insect Biochem. Physiol. : 129 -138.

  • Fitches, E., Audsley, N., Gatehouse, J. A. and Edwards. J. P. (2002): Fusion proteins containing neuropeptides as novel insect control agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochem. Mol. Biol.32, 1653-1661.

    'Fusion proteins containing neuropeptides as novel insect control agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion ' () 32 Insect Biochem. Mol. Biol. : 1653 -1661.

    • Search Google Scholar
  • Fónagy, A. (1999): A PBAN (Pheromone Biosynthesis Activating Neuropeptide) hatásmechanizmusa lepkékben. [Regulation of pheromone production in Lepidoptera by PBAN.] Növényvédelmi Tudományos Napok '99 Budapest, Sáringer, Gy., Balázs, K. és Szemessy Á. (eds): Abs. Vol. p. 47.

    A PBAN (Pheromone Biosynthesis Activating Neuropeptide) hatásmechanizmusa lepkékben. [Regulation of pheromone production in Lepidoptera by PBAN.] , () 47.

    • Search Google Scholar
  • Gäde, G. (1997): The explosion of structural information on insect neuropeptides. In: Herz, W., Kirby, G. W., Moore, R. E., Steglich, W. and Tamm, C. (eds): Progress in the Chemistry of Organic Natural Products, Springer, Wien, New York, pp. 1-128.

    The explosion of structural information on insect neuropeptides , () 1 -128.

  • Gäde, G. (2004): Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu. Rev. Entomol.49, 93-113.

    'Regulation of intermediary metabolism and water balance of insects by neuropeptides ' () 49 Annu. Rev. Entomol. : 93 -113.

    • Search Google Scholar
  • Gäde, G. and Auerswald, L. (2003): Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol.132, 10-20.

    'Mode of action of neuropeptides from the adipokinetic hormone family ' () 132 Gen. Comp. Endocrinol. : 10 -20.

    • Search Google Scholar
  • Gäde, G. and Hoffmann, K. H. (2005): Neuropeptides regulating development and reproduction in insects. Physiol. Entomol.30, 103-121.

    'Neuropeptides regulating development and reproduction in insects ' () 30 Physiol. Entomol. : 103 -121.

    • Search Google Scholar
  • Gäde, G., Hoffmann, K-H. and Spring, J. H. (1997): Hormonal regulation in insects: Facts, gaps, and future directions. Physiol. Rev.77, 963-1032.

    'Hormonal regulation in insects: Facts, gaps, and future directions ' () 77 Physiol. Rev. : 963 -1032.

    • Search Google Scholar
  • Gäde, G. and Goldsworthy, G. (2003): Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Manag. Sci.59, 1063-1075.

    'Insect peptide hormones: a selective review of their physiology and potential application for pest control ' () 59 Pest Manag. Sci. : 1063 -1075.

    • Search Google Scholar
  • Gilon, C., Halle, D., Chorev, M., Selinger, Z. and Byk, G. (1991): Backbone cyclization: a new method for conferring conformational constraint on peptides. Biopolymers31, 745-750.

    'Backbone cyclization: a new method for conferring conformational constraint on peptides ' () 31 Biopolymers : 745 -750.

    • Search Google Scholar
  • Nachman, R. J., Isaac, R. E., Coast, G. M. and Holman, G. M. (1997): Aib-containing analogues of the insect kinin neuropeptide family demonstrate resistance to an insect angiotensin-converting enzyme and potent diuretic activity. Peptides18, 53-57.

    'Aib-containing analogues of the insect kinin neuropeptide family demonstrate resistance to an insect angiotensin-converting enzyme and potent diuretic activity ' () 18 Peptides : 53 -57.

    • Search Google Scholar
  • Nachman, R. J., Olender, E. H., Roberts, V. A., Holman, G. M. and Yamamoto, D. (1996b): A nonpeptidal peptidomimetic agonist of the insect FLRFamide myosuppressin family. Peptides17, 313-320.

    'A nonpeptidal peptidomimetic agonist of the insect FLRFamide myosuppressin family ' () 17 Peptides : 313 -320.

    • Search Google Scholar
  • Stone, J. V., Mordue, W., Batley, K. E. and Morris, H. R. (1976): Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature263, 207-211.

    'Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight ' () 263 Nature : 207 -211.

    • Search Google Scholar
  • Teal, P. E. A. and Nachman, R. J. (1997): Prolonged pheromonotropic activity of pseudopeptide mimics of insect pyrokinin neuropeptides after topical application or injection into a moth. Regul. Peptides72, 161-167.

    'Prolonged pheromonotropic activity of pseudopeptide mimics of insect pyrokinin neuropeptides after topical application or injection into a moth ' () 72 Regul. Peptides : 161 -167.

    • Search Google Scholar
  • Wigglesworth, V. B. (1935): Functions of the corpus allatum of insects. Nature136, 338-341.

    'Functions of the corpus allatum of insects ' () 136 Nature : 338 -341.

  • Williams, C. M. (1956): The juvenile hormone of insects. Nature178, 212-213.

    'The juvenile hormone of insects ' () 178 Nature : 212 -213.

  • Ziegler, R., Cushing, A. S., Walpole, P., Jasensky, R. D. and Morimoto, H. (1998): Analogs of Manduca adipokinetic hormone tested in a bioassay and in a receptor-binding assay. Peptides19, 481-486.

    'Analogs of Manduca adipokinetic hormone tested in a bioassay and in a receptor-binding assay ' () 19 Peptides : 481 -486.

    • Search Google Scholar
  • Hull, J. J., Ohnishi, A., Moto, K., Kawasaki, Y., Kurata, R., Suzuki, M. G. and Matsumoto, S. (2004): Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori.J. Biol. Chem.279, 51500-51507.

    'Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori ' () 279 J. Biol. Chem. : 51500 -51507.

    • Search Google Scholar
  • Ishizaki, H., Mizoguchi, A., Fujishita, M., Suzuki, A., Moriya, I., Ooka, H., Kataoka, H., Isogai, A., Nagasawa, H., Tamura, S. and Suzuki, A. (1983): Species specificity of the insect Prothoracicotropic hormone (PTTH): the presence of Bombyx- and Samia-specific PTTHs in the brain of Bombyx mori.Dev. Growth Diff.25, 593-600.

    'Species specificity of the insect Prothoracicotropic hormone (PTTH): the presence of Bombyx- and Samia-specific PTTHs in the brain of Bombyx mori ' () 25 Dev. Growth Diff. : 593 -600.

    • Search Google Scholar
  • Iwanaga, M., Dohmae, N., Fónagy, A., Takio, K., Kawasaki, H., Maeda, S. and Matsumoto, S. (1998): Isolation and characterization of Calmodulin in the pheromone gland of the silkworm, Bombyx mori.Comp. Biochem. Physiol.120B, 761-767.

    'Isolation and characterization of Calmodulin in the pheromone gland of the silkworm, Bombyx mori ' () 120B Comp. Biochem. Physiol. : 761 -767.

    • Search Google Scholar
  • Kataoka, H., Tosci, A., Li, J.-P, Carney, R.-L, Schooley, D. A. and Kramer, S. J. (1989): Identification of an allatotropin from the adult Manduca sexta.Science243, 1481-1483.

    'Identification of an allatotropin from the adult Manduca sexta ' () 243 Science : 1481 -1483.

    • Search Google Scholar
  • Konopiŝska, D. (1997): Insect neuropeptide proctolin and its analogues. J. Peptide Res.49, 457-466.

    'Insect neuropeptide proctolin and its analogues ' () 49 J. Peptide Res. : 457 -466.

  • Kopeč, S. (1922): Studies on the necessity of the brain for the inception of insect metamorphosis. Biol. Bull. Mar. Biol. Lab.42, 323-342.

    'Studies on the necessity of the brain for the inception of insect metamorphosis ' () 42 Biol. Bull. Mar. Biol. Lab. : 323 -342.

    • Search Google Scholar
  • Lee, M. L., Cusinato, O., Luswata, R., Wheeler, C. H. and Goldsworthy, G. J. (1997): N-terminal modifications to AKH-I from Locusta migratoria: assessment of biological potencies in vivo and in vitro.Regul. Pep.69, 69-76.

    'N-terminal modifications to AKH-I from Locusta migratoria: assessment of biological potencies in vivo and in vitro ' () 69 Regul. Pep. : 69 -76.

    • Search Google Scholar
  • Lee, M. L., Goldsworthy, G. J., Poulos, C. P. and Velentza, A. (1996): Synthesis and biological activity of adipokinetic hormone analogues modified at the C-terminus. Peptides17, 1285-1290.

    'Synthesis and biological activity of adipokinetic hormone analogues modified at the C-terminus ' () 17 Peptides : 1285 -1290.

    • Search Google Scholar
  • Altstein, M., Ben-Aziz, O., Schefler, I., Zeltser, I. and Gilon, C. (2000): Advances in the application of neuropeptides in insect control. Crop Prot.19, 547-555.

    'Advances in the application of neuropeptides in insect control ' () 19 Crop Prot. : 547 -555.

    • Search Google Scholar
  • Birgül, N., Weise, C., Kreienkamp, H.-J. and Richter, D. (1999): Reverse physiology in Drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J.18, 5892-5900.

    'Reverse physiology in Drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family ' () 18 EMBO J. : 5892 -5900.

    • Search Google Scholar
  • Blomquist, G. J. and Vogt, R. G. (2003): Insect pheromone biochemistry and molecular biology. Elsevier, Academic Press, pp. 1-745.

    Insect pheromone biochemistry and molecular biology , () 1 -745.

  • Fónagy, A., Yokoyama, N., Okano, K., Ozawa, R., Tatsuki, S., Maeda, S. and Matsumoto, S. (1999): Involvement of Calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera). Comp. Biochem. Physiol.124B, 51-60.

    'Involvement of Calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera) ' () 124B Comp. Biochem. Physiol. : 51 -60.

    • Search Google Scholar
  • Fónagy, A., Yokoyama, N., Okano, K., Tatsuki, S., Maeda, S. and Matsumoto, S. (2000): Pheromone-producing cells in the silkmoth, Bombyx mori: identification and their morphological changes in response to pheromonotropic stimuli. J. Insect Physiol.46, 735-744.

    'Pheromone-producing cells in the silkmoth, Bombyx mori: identification and their morphological changes in response to pheromonotropic stimuli ' () 46 J. Insect Physiol. : 735 -744.

    • Search Google Scholar
  • Lee, M. J., de Jong, S., Gäde, G., Poulos, C. and Goldsworthy, G. J. (2000): Mathematical modelling of insect neuropeptide potencies. Are quantitatively predictive models possible? Insect Biochem. Molec. Biol.30, 899-907.

    'Mathematical modelling of insect neuropeptide potencies. Are quantitatively predictive models possible? ' () 30 Insect Biochem. Molec. Biol. : 899 -907.

    • Search Google Scholar
  • Li, X. J., Wolfgang, W., Wu, Y. N., North, R. A. and Forte, M. (1991): Cloning, heterologus expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. EMBO J.10p 3221-3229.

    'Cloning, heterologus expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides ' () 10p EMBO J. : 3221 -3229.

    • Search Google Scholar
  • Matsumoto, S., Fónagy, A., Yamamoto, M., Yokoyama, N., Esumi, Y., Suzuki, Y. and Yamaguchi, I. (2002): Chemical characterization of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori.Insect Biochem. Molec. Biol.32, 1447-1455.

    'Chemical characterization of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori ' () 32 Insect Biochem. Molec. Biol. : 1447 -1455.

    • Search Google Scholar
  • Nachman, R. J., Garside, C. S. and Tobe, S. S. (1999): Hemolymph and tissue bound peptidase-resistant analogs of the insect allatostatins. Peptides20, 23-29.

    'Hemolymph and tissue bound peptidase-resistant analogs of the insect allatostatins ' () 20 Peptides : 23 -29.

    • Search Google Scholar
  • Nachman, R. J., Teal, P. E. A., Radel, P., Holman, G. M. and Abernathy, R. L. (1996a): Potent pheromonotropic/myotropic activity of a carboranyl pseudotetrapeptide analogue of the insect pyrokinin/PBAN neuropeptide family administered via injection or topical application. Peptides17, 747-752.

    'Potent pheromonotropic/myotropic activity of a carboranyl pseudotetrapeptide analogue of the insect pyrokinin/PBAN neuropeptide family administered via injection or topical application ' () 17 Peptides : 747 -752.

    • Search Google Scholar
  • Orchard, I., Lange, A. B. and Bendena, W. G. (2001): FMRFamide-related peptides: a multifunctional family of structurally related neuropeptides in insects. Adv. Insect Physiol.28, 267-329.

    'FMRFamide-related peptides: a multifunctional family of structurally related neuropeptides in insects ' () 28 Adv. Insect Physiol. : 267 -329.

    • Search Google Scholar
  • Rafacli, A. (2002): Neuroendocrine control of pheromone biosynthesis in moths. Int. Rev. Cytol.213, 49-92.

    'Neuroendocrine control of pheromone biosynthesis in moths ' () 213 Int. Rev. Cytol. : 49 -92.

    • Search Google Scholar
  • Raina, A. K. and Gäde, G. (1988): Insect peptide nomenclature. Insect Biochem.18, 785-787.

    'Insect peptide nomenclature ' () 18 Insect Biochem. : 785 -787.

  • Raina, A. K., Jaffe, H., Kempe, T. G., Keim, P., Blacher, R. W., Fales, H., Riley, C. T., Klun, J. A., Ridgway, R. L. and Hayes, D. K. (1989): Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science244, 796-798.

    'Identification of a neuropeptide hormone that regulates sex pheromone production in female moths ' () 244 Science : 796 -798.

    • Search Google Scholar
  • Reagan, J. D. (1994): Expression cloning of an insect diuretic hormone receptor: a member of the calcitonin/secretin receptor family. J. Biol. Chem.269, 9-12.

    'Expression cloning of an insect diuretic hormone receptor: a member of the calcitonin/secretin receptor family ' () 269 J. Biol. Chem. : 9 -12.

    • Search Google Scholar
  • Scharrer, B. (1937): Über sekretorisch tätige Nervenzellen bei wirbellosen Tieren. Naturwissenschaften.25, 131-138.

    'Über sekretorisch tätige Nervenzellen bei wirbellosen Tieren ' () 25 Naturwissenschaften. : 131 -138.

    • Search Google Scholar
  • Scharrer, E. (1928): Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische). Z. Vgl. Physiol.7, 1-38.

    'Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische) ' () 7 Z. Vgl. Physiol. : 1 -38.

    • Search Google Scholar
  • Schoofs, L., Holman, G. M., Nachman, R. N., Hayes, T. K. and De Loof, A. (1994): Structure, function, and distribution of insect myotropic peptides. In: Davey, K. D., Peter, R. E. and Tobe, S. S. (eds): Perspectives in Comparative Endocrinology, National Research Council of Canada, Ottawa, pp. 155-165.

    Structure, function, and distribution of insect myotropic peptides , () 155 -165.

  • Smith, W. A. (1995): Regulation and consequences of cellular changes in the prothoracic glands of Manduca sexta during the last larval instar: a review. Arch. Insect Biochem. Physiol.30, 271-293.

    'Regulation and consequences of cellular changes in the prothoracic glands of Manduca sexta during the last larval instar: a review ' () 30 Arch. Insect Biochem. Physiol. : 271 -293.

    • Search Google Scholar
  • Starratt, A. N. and Brown, B. E. (1975): Structure of pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci.17, 1253-1256.

    'Structure of pentapeptide proctolin, a proposed neurotransmitter in insects ' () 17 Life Sci. : 1253 -1256.

    • Search Google Scholar
  • Staubli, F., Jørgensen, T. J. D., Cazzamali, G., Williamson, M., Lenz, C., Søndergaard, L., Roepstorff, P. and Grimmelikhuijzen, C. J. P. (2002): Molecular identification of the insect adipokinetic hormone receptors. Proc. Natl. Acad. Sci. USA99, 3446-3451.

    'Molecular identification of the insect adipokinetic hormone receptors ' () 99 Proc. Natl. Acad. Sci. USA : 3446 -3451.

    • Search Google Scholar
  • Stay, B., Tobe, S. S. and Bendena, W. G. (1994): Allatostatins: Identification, primary structures, functions and distribution. Adv. Insect Physiol.25, 267-337.

    'Allatostatins: Identification, primary structures, functions and distribution ' () 25 Adv. Insect Physiol. : 267 -337.

    • Search Google Scholar
Submit Your Manuscript
 
The author instruction is available in PDF.
Please, download the file from HERE.

Editor-in-Chief:
Jenő KONTSCHÁN 
(Centre for Agricultural Research, Plant Protection Institute)

Technical editor: Ágnes TURÓCI (Centre for Agricultural Research, Plant Protection Institute)

Editorial Board

  • Pál BENEDEK (Hungarian University of Agriculture and Life Sciences)
  • José Antonio Hernández CORTÉS (CEBAS – Spanish National Research Council)
  • Tibor ÉRSEK (Hungarian University of Agriculture and Life Sciences)
  • Wittko FRANCKE (University of Hamburg)
  • László HORNOK (Hungarian University of Agriculture and Life Sciences)
  • József HORVÁTH (University of Pannonia, Faculty of Georgikon)
  • Mehmet Bora KAYDAN (Cukurova University)
  • Zoltán KIRÁLY (Centre for Agricultural Research, Plant Protection Institute)
  • Levente KISS (University of Southern Queensland)
  • Karl-Heinz KOGEL (University of Giessen)
  • Jenő KONTSCHÁN (Centre for Agricultural Research, Plant Protection Institute)
  • Tamás KŐMÍVES (Centre for Agricultural Research, Plant Protection Institute)
  • László PALKOVICS (Hungarian University of Agriculture and Life Sciences)
  • Miklós POGÁNY (Centre for Agricultural Research, Plant Protection Institute)
  • James E. SCHOELZ (University of Missouri)
  • Stefan SCHULZ (Technical University of Braunschweig)
  • Andrzej SKOCZOWSKI (Pedagogical University of Kraków)
  • Gábor SZŐCS (Centre for Agricultural Research, Plant Protection Institute)
  • Miklós TÓTH (Centre for Agricultural Research, Plant Protection Institute)
  • Ferenc VIRÁNYI (Hungarian University of Agriculture and Life Sciences)
  • Pedro Díaz VIVANCOS (CEBAS – Spanish National Research Council)

Acta Phytopathologica et Entomologica Hungarica
P.O. Box 102
H-1525 Budapest, Hungary
Phone: (36 1) 487 7534
Fax: (36 1) 487 7555
E-mail: acta@atk.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Elsevier GEO Abstracts
  • Globals Health
  • Referativnyi Zhurnal
  • SCOPUS
  • Zoological Abstracts

 

 

2020  
Scimago
H-index
20
Scimago
Journal Rank
0,185
Scimago
Quartile Score
Insect Science Q4
Plant Science Q4
Scopus
Cite Score
75/98=0,8
Scopus
Cite Score Rank
Insect Science 129/153 (Q4)
Plant Science 353/445 (Q4)
Scopus
SNIP
0,438
Scopus
Cites
313
Scopus
Documents
20
Days from submission to acceptance 64
Days from acceptance to publication 209
Acceptance
Rate
48%

 

2019  
Scimago
H-index
19
Scimago
Journal Rank
0,177
Scimago
Quartile Score
Insect Science Q4
Plant Science Q4
Scopus
Cite Score
66/103=0,6
Scopus
Cite Score Rank
Insect Science 125/142 (Q4)
Plant Science 344/431 (Q4)
Scopus
SNIP
0,240
Scopus
Cites
212
Scopus
Documents
24
Acceptance
Rate
35%

 

Acta Phytopathologica et Entomologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 450 EUR / 562 USD
Print + online subscription: 524 EUR / 654 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Phytopathologica et Entomologica Hungarica
Language English
Size B5
Year of
Foundation
1966
Publication
Programme
2020 Volume 55
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-1249 (Print)
ISSN 1588-2691 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 2 0 0
Mar 2021 5 0 0
Apr 2021 4 0 0
May 2021 5 1 2
Jun 2021 2 0 0
Jul 2021 2 0 0
Aug 2021 0 0 0