Authors:
O. Viczián Hungarian Academy of Sciences Plant Protection Institute, Centre for Agricultural Research H-1525 Budapest P.O.B. 102 Hungary

Search for other papers by O. Viczián in
Current site
Google Scholar
PubMed
Close
,
A. Künstler Hungarian Academy of Sciences Plant Protection Institute, Centre for Agricultural Research H-1525 Budapest P.O.B. 102 Hungary

Search for other papers by A. Künstler in
Current site
Google Scholar
PubMed
Close
,
Y. Hafez Hungarian Academy of Sciences Plant Protection Institute, Centre for Agricultural Research H-1525 Budapest P.O.B. 102 Hungary

Search for other papers by Y. Hafez in
Current site
Google Scholar
PubMed
Close
, and
L. Király Hungarian Academy of Sciences Plant Protection Institute, Centre for Agricultural Research H-1525 Budapest P.O.B. 102 Hungary

Search for other papers by L. Király in
Current site
Google Scholar
PubMed
Close
Restricted access

High concentrations of the reactive oxygen species (ROS) superoxide (O2•−) and hydrogen peroxide (H2O2) contribute to the induction of plant cell and tissue death (necrosis). In an effort to create transgenic plants with high antioxidant capacity that could resist necrotic symptoms we produced two transgenic tobacco (Nicotiana tabacum cv. SR1) lines (S1 and S2) overexpressing a tomato chloroplast superoxide dismutase (SlChSOD). SOD genes encode for antioxidant enzymes that dismutate superoxide to hydrogen peroxide. Therefore, SOD-overproducing plants may contain high levels of hydrogen peroxide and are sensitive to stress-related necrosis unless sufficient degradation of hydrogen peroxide is conferred by elevated expression of antioxidants like e.g. catalases and peroxidases. Indeed, line S1 displayed elevated expression of a glutathione peroxidase (NtGPX) and a glutathione S-transferase (NtGSTU1b), as compared to wild type plants. Interestingly, however, expression of a catalase (NtCAT1) was repressed in both SOD-overexpressing lines. This predicts that such plants could be sensitive to localized necrosis (HR) caused by virus infection, since repression of NtCAT1 has been shown to occur during virus-induced HR (e.g. Dorey et al., 1998; Künstler et al., 2007). To elucidate whether other catalases might play a role in resistance to virus induced HR-type necrotic symptoms, a maize catalase (ZmCat2) was transiently overexpressed in Nicotiana edwardsonii and N. edwardsonii var. Columbia plants by agroinfiltration. Inoculation of agroinfiltrated plants with Tobacco mosaic virus (TMV) revealed that ZmCat2 confers enhanced resistance to HR-type necrosis during TMV infection. It seems that catalases may play different roles in influencing resistance to virus-induced hypersensitive necrosis.

  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE.

 

Editor-in-Chief

Jenő KONTSCHÁN Centre for Agricultural Research, Hungary

Technical Editor

Ágnes TURÓCI Centre for Agricultural Research, Hungary

Section Editor

K SALÁNKI Centre for Agricultural Research, Hungary
 

Editorial Board

Z BOZSÓ Centre for Agricultural Research, Hungary
PE CHETVERIKOV Saint-Petersburg State University, Russia
JX CUI Henan Institute of Science and Technology, China
J FODOR Centre for Agricultural Research, Hungary
Z IMREI Centre for Agricultural Research, Hungary
BM KAYDAN Çukurova University, Turkey
L KISS University of Southern Queensland, Australia
V MARKÓ Hungarian University of Agriculture and Life Sciences, Hungary
MW NEGM Ibaraki University, Japan
L PALKOVICS Széchenyi István University, Hungary
M POGÁNY Centre for Agricultural Research, Hungary
D RÉDEI National Chung Hsing University, Taiwan
A TOLSTIKOV University of Tyumen, Russia
J VUTS Rothamsted Research, UK
GQ WANG Guangxi University, China

Acta Phytopathologica et Entomologica Hungarica
P.O. Box 102
H-1525 Budapest, Hungary
Phone: (36 1) 487 7534
Fax: (36 1) 487 7555
E-mail: acta@atk.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier GEO Abstracts
  • Globals Health
  • Referativnyi Zhurnal
  • SCOPUS
  • Zoological Abstracts

 

 

2023  
Scopus  
CiteScore 1.1
CiteScore rank Q4 (Insect Science)
SNIP 0.279
Scimago  
SJR index 0.22
SJR Q rank Q4

Acta Phytopathologica et Entomologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 536 EUR / 590 USD
Print + online subscription: 626 EUR / 688 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Phytopathologica et Entomologica Hungarica
Language English
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-1249 (Print)
ISSN 1588-2691 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 23 5 0
Feb 2024 24 0 1
Mar 2024 9 1 0
Apr 2024 10 0 0
May 2024 13 0 0
Jun 2024 34 0 0
Jul 2024 37 0 0