View More View Less
  • 1 University of Biskra, Biskra, Algeria
  • | 2 National High School of Agronomy (ENSA), El-Harrach, Algiers, Algeria
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Fourteen strains of Trichoderma spp. were isolated from Algerian desert soils and assessed for their antagonistic activity against Fusarium crown and root rot of wheat. Biocontrol efficiency of Trichoderma spp. was studied by in vitro and in vivo based bioassay against three pathogenic species: F. culmorum, F. graminearum and F. verticillioides. In vitro based bioassay (dual culture) results obtained with all Trichoderma spp. isolates showed significant decrease in colony diameter of Fusarium species compared to the control. The highest percentages of reduction in colony diameter were obtained with T. harzianum Thr.4 causing a growth reduction of 70.68%, 67.05 and 70.57% against F. culmorum, F. graminearum and F. verticillioides, respectively. All Trichoderma spp. isolates were able to overgrow and sporulate above F. culmorum colonies but no overgrowth was observed with F. graminearum and F. verticilliodes. The seed treatment by Trichoderma spp. isolates before sowing in a soil already infested by the pathogens led to a significant decrease of disease severity compared to the untreated control. The highest disease index decrease (>70%) was obtained with two isolates of T. harzianum (Thr.4 and Thr.10) and T. viride Tv.6 against the three fungal pathogens. Lytic enzymes production by Trichoderma spp. isolates was tested in liquid cultures containing fungal cell walls of each pathogen as sole carbon source. Higher levels of protease and chitinase activities were induced by hyphal cell walls of F. graminearum than cell walls of F. verticillioides and F. culmorum. T. harzianum Thr.4 exhibited the highest enzyme activities with hyphal cell walls of F. graminearum and F. culmorum. However, in the medium amended with cell wall of F. verticillioides, maximal lytic activities were recorded for T. viride Tv.6.

  • Anees, M., Tronsmo, A., Edel-Hermann, V., Hjeljord, L. G., Héraud, C. and Steinberg, C. (2010): Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol. 114, 691701.

    • Search Google Scholar
    • Export Citation
  • Barbosa, I. P. and Kemmelmeier, C. (1993): Chemical composition of the hyphal wall from Fusarium graminearum. Exp. Mycol. 17, 274283.

    • Search Google Scholar
    • Export Citation
  • Benhamou, N. and Chet, I. (1993): Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani: Ultrastructure and gold cytochemistry of the mycoparasitic process. Phytopathology 83, 10621071.

    • Search Google Scholar
    • Export Citation
  • Benhamou, N. and Chet, I. (1996): Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: Ultrastructural and cytochemical aspects of the interaction. Phytopathology 86, 405416.

    • Search Google Scholar
    • Export Citation
  • Benítez, T., Rincón, A. M., Limón, M. C. and Codón, A. C. (2004): Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7, 249260.

    • Search Google Scholar
    • Export Citation
  • Bissett, J. (1984): A revision of the genus Trichoderma. I. Section Longibrachiatum sec. nov. Can. J. Bot. 62, 924931.

  • Bissett, J. (1991a): A revision of the genus Trichoderma. II. Infrageneric classification. Can. J. Bot. 69, 23572372.

  • Bissett, J. (1991b): A revision of the genus Trichoderma. III. Section Pachybasium. Can. J. Bot. 69, 23732417.

  • Bissett, J. (1991c): A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can. J. Bot. 69, 24182420.

    • Search Google Scholar
    • Export Citation
  • Booth, C. (1977): Laboratory guide to the identification of the major species. Commonwealth Mycological Institute, England, 220 p.

  • Boureghda, H., Djeghmoum, C. and Bouroubi, N. (2010): Study of in vitro growth and pathogenecity of some isolates of Fusarium spp. causal agent of Fusarium head scab and root rot of wheat. Abstract Book of 13th Congress of the Mediterranean Phytopathological Union. 20–25 June 2010, Rome, Italy.

    • Search Google Scholar
    • Export Citation
  • Bradford, M. M. (1976): A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248254.

    • Search Google Scholar
    • Export Citation
  • Brunner, K., Peterbauer, C. K., Mach, R. L., Lorito, M., Zeilinger, S. and Kubicek, R. L. (2003): The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase by chitin and major relevance to biocontrol. Curr. Genet. 43, 289295.

    • Search Google Scholar
    • Export Citation
  • Camporota, P. (1985): Antagonisme in vitro de Trichoderma spp. vis-à-vis de Rhizoctonia solani Kühn. Agronomie 5, 613620.

  • Chaverri, P., Castlebury, L. A., Overton, B. E. and Samuels, G. J. (2003): Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia 95, 11001140.

    • Search Google Scholar
    • Export Citation
  • Chet, I., Benhamou, N. and Haran, S. (1998): Mycoparasitism and lytic enzymes. In: G. E. Harman and C. P. Kubicek (eds): Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications. Taylor and Francis, London, pp. 153172.

    • Search Google Scholar
    • Export Citation
  • Cook, R. J. (1980): Fusarium foot rot of wheat and its control in the Pacific Northwest. Plant Dis. 64, 10611066.

  • Cook, R. J. (2010): Fusarium root, crown, and foot rots and associated seedling diseases. In: W. W. Bockus, R. Bowden, R. Hunger, W. Morrill, T. Murray and R. Smiley (eds): Compendium of Wheat Diseases and Pests. The Pennsylvania State University Press, University Park, USA, pp. 3739.

    • Search Google Scholar
    • Export Citation
  • Dal Bello, G. M., Mónaco, C. I. and Simón, M. R. (2002): Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms. World J. Microb. Biot. 18, 627636.

    • Search Google Scholar
    • Export Citation
  • Davet, P. and Rouxel, F. (1997): Détection et isolement des champignons du sol. INRA, Paris.

  • Delgado-Sánchez, P., Ortega-Amaro, M. A., Jiménez-Bremont, J. F. and Flores, J. (2011): Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biol. 13, 154159.

    • Search Google Scholar
    • Export Citation
  • Elad, Y. and Kapat, A. (1999): The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 105, 177189.

    • Search Google Scholar
    • Export Citation
  • Elad, Y., Chet, I. and Henis, Y. (1982): Degradation of plant pathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28, 719725.

    • Search Google Scholar
    • Export Citation
  • Flores, A., Chet, I. and Herrera-Estrella, A. (1997): Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr. Genet. 31, 3037.

    • Search Google Scholar
    • Export Citation
  • Foroutan, A. (2013): Evaluation of Trichoderma isolates for biological control of wheat Fusarium foot and root rot. Rom. Agric. Res. 30, 335342.

    • Search Google Scholar
    • Export Citation
  • Gams, W. and Bissett, J. (1998): Morphology and identification of Trichoderma. In: C. P. Kubicek and G. E. Harman (eds): Trichoderma and Gliocladium, basic biology, taxonomy and genetic. Taylor and Francis, London, pp. 331.

    • Search Google Scholar
    • Export Citation
  • Geraldine, A. M., Lopes, F. A. C., Carvalho, D. D. C., Barbosa, E. T., Rodrigues, A. R., Brandão, R. S., Ulhoa, C. J. and Lobo Junior, M. (2013): Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol. Control. 67, 308316.

    • Search Google Scholar
    • Export Citation
  • Geremia, R., Goldman, G., Jacobs, D., Ardiles, W., Vila, S., Van Montagu, M. and Herrera-Estrella, A. (1993): Molecular characterization of the proteinase-encoding gene prb1 related to mycoparasitism by Trichoderma harzianum. Mol. Microbiol. 8, 603613.

    • Search Google Scholar
    • Export Citation
  • Grondona, I., Hermosa, R., Tejada, M., Gomis, M. D., Mateos, P. F., Bridge, P. D., Monte, E. and Garcia-Acha, I. (1997): Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborn fungal plant pathogens. Appl. Environ. Microbiol. 63, 31893198.

    • Search Google Scholar
    • Export Citation
  • Haran, S., Schickler, H. and Chet, I. (1996): Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142, 23212331.

    • Search Google Scholar
    • Export Citation
  • Harman, G. E. (2000): Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T22. Plant Dis. 84, 377393.

    • Search Google Scholar
    • Export Citation
  • Harman, G. E., Taylor, G. and Starz, T. E. (1989): Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatment. Plant Dis. 73, 631637.

    • Search Google Scholar
    • Export Citation
  • Harman, G. E., Howell, C. R., Vitebro, A., Chet, I. and Lorito, M. (2004): Trichoderma species –opportunistic, avirulent plant symbionts. Nature Reviews/Microbiology 2, 4356.

    • Search Google Scholar
    • Export Citation
  • Harman, G. E., Björkman, T., Ondik, K. and Shoresh, M. (2008): Changing paradigms on the mode of action and uses of Trichoderma spp. for biocontrol. Outlooks on Pest Management. DOI: 10.1564/19feb00.

    • Search Google Scholar
    • Export Citation
  • Herrera-Estrella, A. and Chet, I. (1999): Chitinases in biological control. In: P. Jolles and R. A. A. Muzzarelli (eds): Chitin and Chitinases. Birkhäuser Publishing, Ltd. Basel, Switzerland, pp. 171184.

    • Search Google Scholar
    • Export Citation
  • Howell, C. R. (2003): Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 87, 410.

    • Search Google Scholar
    • Export Citation
  • Kembhavi, A. A., Kulkarni, A. and Pant, A. A. (1993): Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No 64. Appl. Biochem. Biotechnol. 38, 8392.

    • Search Google Scholar
    • Export Citation
  • Khalifa, M. (2006): Common root rot of wheat in Syria and DNA variability within Fusarium spp. as a major pathogen. PhD thesis University of Aleppo, Syria, 109 p.

    • Search Google Scholar
    • Export Citation
  • Kullnig, C., Mach, R. L., Lorito, M. and Kubicek, C. P. (2000): Enzyme diffusion from Trichoderma atroviride (= T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl. Environ. Microbiol. 66, 22322234.

    • Search Google Scholar
    • Export Citation
  • Laborda, F., Garcia Acha, I., Uruburu, F. and Villanueva, J. R. (1974): Structure of conidial walls of Fusarium culmorum. T. Brit. Mycol. Soc. 62, 557566.

    • Search Google Scholar
    • Export Citation
  • Leslie, J. F. and Summerell, B. A. (2006): The Fusarium Laboratory Manual. Blackwell Publishing Professional, USA, 388 p.

  • Lounaci, L. and Athmani-Guemouri, S. (2014): Action de Paenibacillus polymyxa SGK2 sur quelques champignons de la fusariose du blé dur (Triticum durum) en Algérie. Algerian J. Natural Products 2, 3542.

    • Search Google Scholar
    • Export Citation
  • Metcalf, D. A. and Wilson, C. R. (2001): The process of antagonism of Sclerotium cepivorumin white rot affected onion roots by Trichoderma Koningii. Plant Pathol. 50, 249257.

    • Search Google Scholar
    • Export Citation
  • Miller, G. L. (1959): Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426428.

  • Moya-Elizondo, A. E. (2013): Fusarium crown rot disease: biology, interactions, management and function as a possible sensor of global climate change. Cien. Inv. Agr. 40, 235252.

    • Search Google Scholar
    • Export Citation
  • Nelson, D. E., Desjardins, A. E. and Plattner, R. D. (1993): Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry and significance. Annu. Rev. Phytopathol. 31, 233252.

    • Search Google Scholar
    • Export Citation
  • Parry, D. W., Jenkinson, P. and Mcleod, L. (1995): Fusarium ear blight (scab) in small grain cereals. Plant Pathol. 44, 207238.

  • Peberdy, J. F. (1990): Fungal cell wall-a review. In: P. J. Kuhn, A. P. J. Trinci, M. J. Jung, M. M. Goosey and I. G. Cooping (eds): Biochemistry of Cell Walls and Membranes in Fungi. Springer-Verlag, Heidelberg, Germany, pp. 524.

    • Search Google Scholar
    • Export Citation
  • Rifai, M. A. (1969): A revision of the genus Trichoderma. Mycological Papers 116, 156.

  • Salehpour, M., Etebarian H. R., Roustaci, A., Khodakaramian, G. and Aminian, H. (2005): Biological control of common root rot of wheat (Bipolaris sorokiniana) by Trichoderma isolates. Plant Pathology 4, 8590.

    • Search Google Scholar
    • Export Citation
  • Sivan, A. and Chet, I. (1986): Biological control of Fusarium spp. in cotton, wheat and muskmelon by Trichoderma harzianum. J. Phytopathol. 116, 3947.

    • Search Google Scholar
    • Export Citation
  • Sivan, A. and Chet, I. (1989): Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. J. Gen. Microbiol. 135, 675682.

    • Search Google Scholar
    • Export Citation
  • Thrane, C., Tronsmo, A. and Jensen, D. F. (1997): Endo-1,3-β-glucanase and cellulase from Trichoderma harzianum purification and partial characterization, induction of and biological activity against plant pathogenic Pythium spp. Eur. J. Plant Pathol. 103, 331344.

    • Search Google Scholar
    • Export Citation
  • Tousson, T. A. and Nelson, P. E. (1976): A pictorial guide to the identification of Fusarium species according to the taxonomy system of Snyder and Hansen. The Pennsylvania State University Press, 43 p.

    • Search Google Scholar
    • Export Citation
  • Tunali, B., Nicol, J. M., Hodson, D., Uçkun, Z., Büyük, O., Erdurmuş, D., Hekimhan, H., Aktaş, H., Akbudak, M. A. and Bağcı, S. A. (2008): Root and crown rot fungi associated with spring, facultative, and winter wheat in Turkey. Plant Dis. 92, 12991306.

    • Search Google Scholar
    • Export Citation
  • Vinale, F., Sivasithamparamb, K., Ghisalberti, E. L., Marra, R., Woo, S. L. and Lorito, M. (2008): Trichoderma- plant-pathogen interactions. Soil Biol. Biochem. 40, 110.

    • Search Google Scholar
    • Export Citation
  • White, T. J., Bruns, T., Lee, S. and Taylor, J. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White (eds): PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, USA, pp. 315322.

    • Search Google Scholar
    • Export Citation
  • Wiese, M. V. (1987): Common (dryland) root and foot rot and associated leaf and seedling diseases. In: M. V. Wiese (ed.): Compendium of Wheat Diseases. American Phytopathological Society, APS Press, pp. 5355.

    • Search Google Scholar
    • Export Citation
  • Woo, S. L., Scala, F., Ruocco, M. and Lorito, M. (2006): The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96, 181185.

    • Search Google Scholar
    • Export Citation
Submit Your Manuscript
 
The author instruction is available in PDF.
Please, download the file from HERE.

Editor-in-Chief:
Jenő KONTSCHÁN 
(Centre for Agricultural Research, Plant Protection Institute)

Technical editor: Ágnes TURÓCI (Centre for Agricultural Research, Plant Protection Institute)

Editorial Board

  • Pál BENEDEK (Hungarian University of Agriculture and Life Sciences)
  • José Antonio Hernández CORTÉS (CEBAS – Spanish National Research Council)
  • Tibor ÉRSEK (Hungarian University of Agriculture and Life Sciences)
  • Wittko FRANCKE (University of Hamburg)
  • László HORNOK (Hungarian University of Agriculture and Life Sciences)
  • József HORVÁTH (University of Pannonia, Faculty of Georgikon)
  • Mehmet Bora KAYDAN (Cukurova University)
  • Zoltán KIRÁLY (Centre for Agricultural Research, Plant Protection Institute)
  • Levente KISS (University of Southern Queensland)
  • Karl-Heinz KOGEL (University of Giessen)
  • Jenő KONTSCHÁN (Centre for Agricultural Research, Plant Protection Institute)
  • Tamás KŐMÍVES (Centre for Agricultural Research, Plant Protection Institute)
  • László PALKOVICS (Hungarian University of Agriculture and Life Sciences)
  • Miklós POGÁNY (Centre for Agricultural Research, Plant Protection Institute)
  • James E. SCHOELZ (University of Missouri)
  • Stefan SCHULZ (Technical University of Braunschweig)
  • Andrzej SKOCZOWSKI (Pedagogical University of Kraków)
  • Gábor SZŐCS (Centre for Agricultural Research, Plant Protection Institute)
  • Miklós TÓTH (Centre for Agricultural Research, Plant Protection Institute)
  • Ferenc VIRÁNYI (Hungarian University of Agriculture and Life Sciences)
  • Pedro Díaz VIVANCOS (CEBAS – Spanish National Research Council)

Acta Phytopathologica et Entomologica Hungarica
P.O. Box 102
H-1525 Budapest, Hungary
Phone: (36 1) 487 7534
Fax: (36 1) 487 7555
E-mail: acta@atk.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Elsevier GEO Abstracts
  • Globals Health
  • Referativnyi Zhurnal
  • SCOPUS
  • Zoological Abstracts

 

 

2020  
Scimago
H-index
20
Scimago
Journal Rank
0,185
Scimago
Quartile Score
Insect Science Q4
Plant Science Q4
Scopus
Cite Score
75/98=0,8
Scopus
Cite Score Rank
Insect Science 129/153 (Q4)
Plant Science 353/445 (Q4)
Scopus
SNIP
0,438
Scopus
Cites
313
Scopus
Documents
20
Days from submission to acceptance 64
Days from acceptance to publication 209
Acceptance
Rate
48%

 

2019  
Scimago
H-index
19
Scimago
Journal Rank
0,177
Scimago
Quartile Score
Insect Science Q4
Plant Science Q4
Scopus
Cite Score
66/103=0,6
Scopus
Cite Score Rank
Insect Science 125/142 (Q4)
Plant Science 344/431 (Q4)
Scopus
SNIP
0,240
Scopus
Cites
212
Scopus
Documents
24
Acceptance
Rate
35%

 

Acta Phytopathologica et Entomologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 450 EUR / 562 USD
Print + online subscription: 524 EUR / 654 USD
Subscription fee 2022 Online subsscription: 460 EUR / 576 USD
Print + online subscription: 536 EUR / 670 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Phytopathologica et Entomologica Hungarica
Language English
Size B5
Year of
Foundation
1966
Publication
Programme
2020 Volume 55
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-1249 (Print)
ISSN 1588-2691 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 8 0 0
May 2021 10 0 0
Jun 2021 21 0 0
Jul 2021 4 0 0
Aug 2021 16 0 0
Sep 2021 7 0 0
Oct 2021 0 0 0