View More View Less
  • 1 Aligarh Muslim University, Aligarh-202 002, India
  • 2 Aligarh Muslim University, Aligarh-202 002, India
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Effect of Graphene oxide (GO) was observed on Meloidogyne incognita and Macrophomina phaseolina and on the growth of lentil in pot experiment. Treatment of plants with 10 ml solution of GO with 125, 250 and 500 ppm concentration caused a significant increase in plant dry weight over control. Inoculation of plants with M. incognita or M. phaseolina caused a significant reduction in plant dry weight over uninoculated control. Treatment of plants with 125, 250 and 500 ppm GO and subsequent inoculation with M. incognita or M. phaseolina caused a significant increase in plant dry weight over plants inoculated without GO pretreatment. Treatment of 500 ppm GO caused a greater increase in plant dry weight of M. incognita or M. phaseolina inoculated plants followed by 250 ppm and 125 ppm. Numbers of nodules per root system were high in plants without pathogen. Inoculation of M. incognita or M. phaseolina caused reduction in nodulation. However, treatment of GO in all the three concentrations had no significant effect on nodulation in plants both with and without pathogens. Treatment of GO resulted in reduced galling, nematode multiplication and root-rot index. Greater reduction in galling, nematode multiplication and root-rot index were observed in plants treated with 500 ppm GO followed by 250 ppm and 125 ppm. Indices were reduced to 4, 3 and 2, respectively, when plants with M. phaseolina were treated with 125, 250 and 500 ppm GO. This study shows that the use of GO is useful for the management of M. incognita and M. phaseolina on lentil.

  • Adsule, R. N., Kadam, S. S. and Leung, H. K. (1989): Lentil. In: D. K. Salunkhe and S. S. Kadam (eds): Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology and Utilization. Vol. 11, Boca Raton, FL: CRC Press, 131 p.

    • Search Google Scholar
    • Export Citation
  • Akhavan, O. and Ghaderi, E. (2010): Toxicity of graphene and GO nanowalls against bacteria. ACS Nano 4, 57315736.

  • Allen, M. J., Tung, V. C. and Kaner, R. B. (2010): Honeycomb carbon: a review of graphene. Chem. Rev., 110, 132.

  • Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z. and Han, H. (2014): GO exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6, 18791889.

    • Search Google Scholar
    • Export Citation
  • Compton, O. C. and Nguyen, S. T. (2010): GO, Highly reduced GO, and graphene: Versatile building blocks for carbon-based materials. Small 6, 711.

    • Search Google Scholar
    • Export Citation
  • Dospekhov, B. A. (1984): Field Experimentation. Statistical Procedures. Mir Publishers, Moscow, Russia, pp. 240243.

  • Dreyer, D. R., Jia, H-P. and Bielawski, C. W. (2010a): GO: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 68136816.

    • Search Google Scholar
    • Export Citation
  • Dreyer, D. R., Park, S., Bielawski, C. W. and Ruoff, R. S. (2010b): The chemistry of GO. Chem. Soc. Rev., 39, 228.

  • Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009): Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Royal Soc. Chem. 19, 70987105.

    • Search Google Scholar
    • Export Citation
  • Ghosh, I. and Ghosh, T. (1990): Pycnidia and sclerotia of Macrophomina phaseolina (Tassi) Goid on jute and identity of the sclerotial isolates. J. Mycopathol. Res. 28, 111120.

    • Search Google Scholar
    • Export Citation
  • Gilje, S., Han, W., Wang, M., Wang, K. L. and Kaner, R. B. (2007): A Chemical route to graphene for device applications. Nano Lett, 7, 3394.

    • Search Google Scholar
    • Export Citation
  • Guo, Y. J., Deng, L., Li, J., Guo, S. J., Wang, E. K. and Dong, S. J. (2011): Hemin–graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single nucleotide polymorphism. ACS Nano 5, 12821290.

    • Search Google Scholar
    • Export Citation
  • Haq, M. Z., Ahmad, S., Shad, M. A., Iqbal, S., Qayum, M., Ahmad, A., Luthria, D. L. and Amarowicz, R. (2011): Compositional studies of lentil (Lens culinaris Medik.) cultivars commonly grown in Pakistan. Pak. J. Bot., 43, 15631567.

    • Search Google Scholar
    • Export Citation
  • Harris, S. D. (2005): Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 97, 880887.

  • Hummers, W. S. and Offeman, R. E. (1958): Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339.

  • Hussey, R. S. and Barker, K. R. (1976): Influence of nematodes and light sources on growth and nodulation of soybeans. J. Nematol. 8, 4852.

    • Search Google Scholar
    • Export Citation
  • Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E. and Villagarcia, H. (2012): Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6, 21282135.

    • Search Google Scholar
    • Export Citation
  • Kim, J., Cote, L. J., Franklin Kim, F., Yuan, W., Shull, K. R. and Huang, J. J. (2010): GO sheets at interfaces. Am. Chem. Soc. 132, 81808186.

    • Search Google Scholar
    • Export Citation
  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L. and Ruoff, R. R. (2009): Large-area synthesis of high-quality and uniform graphene films on copper foils. Sciencev 324, 1312.

    • Search Google Scholar
    • Export Citation
  • Liu, S. B., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R. R., Kong, J. and Chen, Y. (2011): Antibacterial activity of graphite, graphite oxide, GO, and reduced GO: membrane and oxidative stress. ACS Nano 5, 69716980.

    • Search Google Scholar
    • Export Citation
  • Lyon, D. Y. and Alvarez, P. J. J. (2008): Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ. Sci. Technol. 42, 81278132.

    • Search Google Scholar
    • Export Citation
  • Mao, S., Pu, H. and Chen, J. (2012): GO and its reduction: Modeling and experimental progress. RSC Adv. 2, 2643.

  • Mattevi, C., Kima, H. and Chhowalla, M. J. (2011): A review of chemical vapour deposition of graphene on copper. Mater. Chem. 21, 3324.

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A. (2004): Electric field effect in atomically thin carbon films. Science 306, 666669.

    • Search Google Scholar
    • Export Citation
  • Pyun, J. (2011): GO as catalyst: Application of carbon materials beyond nanotechnology. Angew. Chem. Int. 50, 46.

  • Rajan, M. S. (2004): Nano: The Next Revolution. National Book Trust, 81-237-4305-X (620.5 T96N E06700), New Delhi, India, pp. 1179.

  • Sanchez, V. C., Jachak, A., Hurt, R. H. and Kane, A. B. (2012): Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 1534.

    • Search Google Scholar
    • Export Citation
  • Sawangphruk, M., Srimuk, P., Chiochan, P., Sangsri, T. and Siwayaprahm, P. (2012): Synthesis and antifungal activity of reduced GO nanosheets. Carbon 50, 51565161.

    • Search Google Scholar
    • Export Citation
  • Shahriary, L. and Athawale, A. A. (2014): Graphene oxide synthesized by using modified hummers approach. Intern. J. Renew. Energy Environ. Engineer. 2, 5863.

    • Search Google Scholar
    • Export Citation
  • Siddiqui, Z. A. and Husain, S. I. (1992): Interaction between Meloidogyne incognita race 3, Macrophomina phaseolina and Bradyrhizobium sp. in the root-rot disease complex of chickpea Cicer arietinum. Fundam. Appl. Nematol. 15, 491494.

    • Search Google Scholar
    • Export Citation
  • Siddiqui, Z. A. and Mahmood, I. (1995): Role of plant symbionts in nematode management: A review. Bioresource Technol. 54, 217226.

  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I. and Seal, S. (2011): Graphene based materials: past, present and future. Prog. Mater Sci. 56, 11781271.

    • Search Google Scholar
    • Export Citation
  • Song, Y. J., Chen, Y., Feng, L. Y., Ren, J. S. and Qu, X. G. (2011): Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem. Commun. 47, 44364438.

    • Search Google Scholar
    • Export Citation
  • Southey J. F. (1986): Laboratory Methods for Work with Plant and Soil Nematodes. Ministry of Agriculture, Fisheries and Food Reference Book No. 402, 202 p.

    • Search Google Scholar
    • Export Citation
  • Taylor, A. L. and Sasser, J. N. (1978): Biology, Identification and Control of Root-knot Nematodes (Meloidogyne spp.). North Carolina State University, Raleigh, Graphics, 111 p.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Liu, X., Chen, J., Han, H. and Yuan, Z. (2014): Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68, 798806.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Liu, X. and Han, H. (2013): Evaluation of antibacterial effects of carbon nanomaterials against copper- resistant Ralstonia solanacearum. Colloids and Surfaces B: Biointerfaces 103, 136142.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Li, Z., Wang, J., Li, J. and Lin, Y. (2011): Graphene and GO: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 205.

    • Search Google Scholar
    • Export Citation
  • Yeh, T-F., Syu, J-M., Cheng, C., Chang, T-H. and Teng, H. (2010): Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater 20, 22552262.

    • Search Google Scholar
    • Export Citation