View More View Less
  • 1 University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary
  • 2 University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary
  • 3 University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
  • 4 Szent István University, Páter Károly út, 1, H-2110 Gödöllő, Hungary
  • 5 University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

There are extensive data on effects of antifungal agents on the plant pathogens, especially on Fusariums spp. species. However, investigations on the interaction of chemicals and the treated cultivars are rare. The aim of the study was to test two types of fungicide mixtures, azoxystrobin-propiconazole, and prothioconazole-tebuconazole, which are applied in wheat cultivars intensively, on six fodder maize hybrids that were infected with Fusarium proliferatum in the R1 growth stage in a field trial. The effect of the fungicide treatment was tested on the starch content and antifungal, antioxidant polyphenols of the kernels in the R3–R4 and R6 stage of the cultivars. The level of the fungal presence and the fumonisin concentration of the kernels were increased significantly under the artificial infection. The fumonisin concentration was variable at the R6 stage of the hybrid maize kernels. The treatment with prothioconazole and tebuconazole was found to be suitable when it was done before flowering, while the azoxystrobin-propiconazole treatments were equally successful before and after maize flowering considering the decreasing fumonisin concentration of the kernels. Both fungicide mixtures, when they were applied after maize flowering, affected the starch biosynthesis to the R3–R4 stage significantly. Meanwhile, azoxystrobin-propiconazole also significantly affected the antioxidant flavone/flavanol contents from the R3–R4 stage to the R6 stage.

  • Abendroth, L. J., Elmore, R. W., Boyer, M. J. and Marlay, S. K. (2011): Corn growth and development. PMR 1 009. Iowa State University Extension, Ames, Iowa.

    • Search Google Scholar
    • Export Citation
  • Adom, K. K. and Liu, R. H. (2002): Antioxidant activity of grains. J. Agric. Food Chem., 50, 61826187. doi 10.1021/jf0205099

  • Al-Juboory, H. H. and Juber, K. S. (2013): Efficiency of some inoculation methods of Fusarium proliferatum and F. verticilloides on the systemic infection and seed transmission on maize under field conditions. Agric. Biol. J. North Am., 4, 583589. doi 10.5251/abjna.2013.4.6.583.589

    • Search Google Scholar
    • Export Citation
  • Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. (2002): The strobilurin fungicides. Pest Management Sci., 58, 649651.

    • Search Google Scholar
    • Export Citation
  • Blandino, M., Galeazzi, M., Savoia, W. and Reyneri, A. (2012): Timing of azoxystrobin+propiconazole application on maize to control northern corn leaf blight and maximize grain yield. F. Crop Res., 139, 2029. doi 10.1016/j.fcr.2012.09.014

    • Search Google Scholar
    • Export Citation
  • Busko, M., Góral, T., Ostrowska, A., Matysiak, A., Walentyn-Góral, D. and Perkowski, J. (2014): The Effect of Fusarium inoculation and fungicide application on concentrations of flavonoids (apigenin, kaempferol, luteolin, naringenin, quercetin, rutin, vitexin) in winter wheat cultivars. Am. J. Plant Sci., 5, 37273736. doi 10.4236/ajps.2014.525389

    • Search Google Scholar
    • Export Citation
  • Chang, C., Yang, M., Wen, H. and Chern, J. (2002): Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal., 10, 178182.

    • Search Google Scholar
    • Export Citation
  • Dall’Asta, C., Falavigna, C., Galaverna, G. and Battilani, P. (2012): Role of maize hybrids and their chemical composition in Fusarium infection and fumonisin production. J. Agric. Food Chem., 60, 38003808 dx. doi.org/10.1021/jf300250z

    • Search Google Scholar
    • Export Citation
  • Das, A. K. and Singh, V. (2015): Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize. J. Funct. Foods, 13, 363374.

    • Search Google Scholar
    • Export Citation
  • Dorn, B., Forrer, H. R., Jenny, E., Wettstein, F. E., Bucheli, T. D. and Vogelgsang, S. (2011): Fusarium species complex and mycotoxins in grain maize from maize hybrid trials and from grower’s fields. J. Appl. Microbiol., 111, 693706. doi 10.1111/j.1365-2672.2011.05091.x

    • Search Google Scholar
    • Export Citation
  • Fischl, G. (1977): A kukorica fuzáriumos csofertozöttsége és csírázási %-a közötti összefüggés vizsgálata. (Study of the correlation between Fusarium ear rot and the sprouting ratio of maize.) Növényvédelem 13, 446448. (in Hung.).

    • Search Google Scholar
    • Export Citation
  • Gauthier, L., Atanasova-Penichon, V., Chéreau, S. and Richard-Forget, F. (2015): Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. Int. J. Mol. Sci., 16, 2483924872. doi 10.3390/ijms161024839

    • Search Google Scholar
    • Export Citation
  • Kaur, C. and Kapoor, H. C. (2002): Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol., 37, 153161.

    • Search Google Scholar
    • Export Citation
  • Logrieco, A., Moretti, A., Ritieni, A., Bottalico, A. and Corda, P. (1995): Occurrence and toxigenecity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Dis., 79, 727731.

    • Search Google Scholar
    • Export Citation
  • Logrieco, A., Mulè, G., Moretti, A. and Bottalico, A. (2002): Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European J. Plant Pathol., 108, 597609.

    • Search Google Scholar
    • Export Citation
  • Moretti, A., Logrieco, A., Bottalico, A., Ritieni, A. and Randazzo, G. (1994): Production of beauvericin by Fusarium proliferatum from maize in Italy. Mycotoxin Res., 10, 7378. doi 10.1007/BF03192255.

    • Search Google Scholar
    • Export Citation
  • Nesic, K., Ivanovic, S. and Nesic, V. (2014): Fusarial toxins: secondary metabolites of Fusarium fungi. Rev. Environ. Contam. Toxicol., 228, 101120.

    • Search Google Scholar
    • Export Citation
  • Picot, A., Barreau, C., Pinson-Gadais, L., Piraux, F., Caron, D., Lannou, C. and Richard-Forget, F. (2011): The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Appl. Environ. Microbiol., 77, 83828290. doi 10.1128/AEM.05216-11

    • Search Google Scholar
    • Export Citation
  • Pilu, R., Cassani, E., Sirizzotti, A., Petroni, K. and Tonelli, C. (2011): Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. J. Appl. Genet., 52, 145152. doi 10.1007/s13353-010-0014-0

    • Search Google Scholar
    • Export Citation
  • Scarpino, V., Reyneri, A., Vanara, F., Scopel, C., Causin, R. and Blandino, M. (2015): Relationship between European Corn Borer injury, Fusarium proliferatum and F. subglutinans infection and moniliformin contamination in maize. F. Crop Res., 183, 6978. doi 10.1016/j.fcr.2015.07.014

    • Search Google Scholar
    • Export Citation
  • Taton, M., Ullmann, P., Benveniste P., Rahier, A. (1988): Interaction of triazole fungicides and plant growth regulators with microsomal cytochrome P-450-dependent obtusifoliol 14a-methyl demethylase. Pestic. Biochem. Physiol., 30, 178189.doi10. 1016/0048-3575(88)90051-X

    • Search Google Scholar
    • Export Citation
  • Wu, Y. -X. and von Tiedemann, A. (2001): Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pestic. Biochem. Physiol., 71, 110.doi: 10.1006/pest.2001.256

    • Search Google Scholar
    • Export Citation