View More View Less
  • 1 University of Debrecen, H-4032, Böszörményi út 138, Debrecen, Hungary
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Cornmeal agar (CMA) is a good to model natural conditions (low C and N, high antioxidants, crude fat) for phytopathogenic fungi. Different CMA media was prepared to model the maize kernel as growth environment for Aspergillus flavus, where stress resistance and aflatoxin B1 (AFB1) production were tested. The CMA medium with high polyphenol and low fatty acid content did not support the mycelial growth and high AFB1 production but the sclerotia development of the cultures. High fatty acid content in the CMA exceeded the inhibitory effect of antioxidant polyphenols of corn and low concentration of AFB1 was detected. Glucose supplement of CMA induced AFB1 production proving the need for free carbon source for the secondary metabolite pathway. The tolerance of the fungus against salt and cell membrane stress was lowered on CMA. At higher fatty acid concentration, the aflatoxin B1 production cannot be hindered by the natural antioxidants and that is important in selection of resistant corn hybrids.

  • Bayram, Ö., Krappmann, S., Ni, M., Woo Bok, J., Helmstaedt, K., Valerius, O., Braus-Stromeyer, S., Kwon, N-J., Keller, N. P., Yu, J-H. and Braus, G. H. (2008): VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 15041506.

    • Search Google Scholar
    • Export Citation
  • Calvo, A. M. (2008): The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet. Biol. 45, 10531061.

    • Search Google Scholar
    • Export Citation
  • Cary, J. W., Klich, M. A. and Beltz, S. B. (2005): Characterization of aflatoxin-producing fungi outside of Aspergillus section Flavi. Mycologia 97, 425432.

    • Search Google Scholar
    • Export Citation
  • Chang, C., Yang, M., Wen, H. and Chern, J. (2002): Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10, 178182.

    • Search Google Scholar
    • Export Citation
  • Coley-Smith, J. R. and Cooke, R. C. (1971): Survival and germination of fungal sclerotia. Annu. Rev. Phytopathol. 9, 6592.

  • Dolezal, A. L., Shu, X., OBrian, G. R., Nielsen, D. M., Woloshuk, C. P. and Boston, R. S. (2014): Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels. Front. Microbiol. 5, 384.

    • Search Google Scholar
    • Export Citation
  • Erdogan, A. (2004): The aflatoxin contamination of some pepper types sold in Turkey. Chemosphere 56, 321325.

  • Fabbri, A. A., Fanelli C., Panfili, G., Passi, S. and Fasella, P. (1983): Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and A. flavus. J. Gen. Microbiol. 129, 34473452.

    • Search Google Scholar
    • Export Citation
  • Fountain, J. C., Scully, B. T., Ni, X., Kemerait, R. C., Lee, R. D., Chen, Z.-Y. and Guo, B. (2014): Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production. Front Microbiol. 5, 40.

    • Search Google Scholar
    • Export Citation
  • Grintzalis, K., Vernardis, S. I., Klapa, M. I. and Georgiou, C. D. (2014): Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl. Environ. Microbiol. 80, 55615571.

    • Search Google Scholar
    • Export Citation
  • Howlett, B. J. (2006): Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr. Opin. Plant Biol. 9, 371375.

  • Huang, J.-Q., Jiang, H.-F., Zhou, Y.-Q., Lei, Y., Wang, S.-Y. and Liao, B.-S. (2009): Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int. J. Food Microbiol. 130, 1721.

    • Search Google Scholar
    • Export Citation
  • Jayashree, T. and Subramanyam, C. (2000): Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radical Biol. Med. 29, 981985.

    • Search Google Scholar
    • Export Citation
  • Kachholz, T. and Demain, A. L. (1983): Nitrate repression of averufin and aflatoxin biosynthesis. J. Natural Prod. 46, 499506.

  • Karányi, Z., Holb, I., Hornok, L., Pócsi, I. and Miskei, M. (2013): FSRD: fungal stress response database. Database (Oxford). 2013, bat037.

    • Search Google Scholar
    • Export Citation
  • Kaur, C. and Kapoor, H. C. (2002): Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol., 37, 153161.

    • Search Google Scholar
    • Export Citation
  • Kovács, Sz. and Pusztahelyi, T. (2017): Survey of the aflatoxin gene cluster in Aspergilli from Hungarian crops. Acta Phytopathol. et Entomol. Hung. 52, 169176.

    • Search Google Scholar
    • Export Citation
  • Mahoney, N. and Molyneux, R. J. (2010): Rapid analytical method for the determination of aflatoxins in plant-derived dietary supplement and cosmetic oils. J. Agric. Food Chem. 58, 40654070.

    • Search Google Scholar
    • Export Citation
  • Mayer, Z., Färber, P. and Geisen, R. (2003): Monitoring the production of aflatoxin B1 in wheat by measuring the concentration of nor-1 mRNA. Appl. Environ. Microbiol. 69, 11541158.

    • Search Google Scholar
    • Export Citation
  • Medina, A., Rodriguez, A. and Magan, N. (2014): Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front Microbiol. 5, 348.

    • Search Google Scholar
    • Export Citation
  • Payne, G. A. and Hagler, Jr. W. M. (1983): Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media. Appl. Environ. Microbiol. 46, 805812.

    • Search Google Scholar
    • Export Citation
  • Schmidt-Heydt, M., Magan, N. and Geisen, R. (2008): Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol. Lett. 284, 142149.

    • Search Google Scholar
    • Export Citation
  • Varga, J., Frisvad, J. C. and Samson, R. A. (2009): A reappraisal of fungi producing aflatoxins. World Mycotoxin J. 2, 263277.

  • Wiseman, D. W. and Buchanan, R. L. (1987): Determination of glucose level needed to induce aflatoxin production in Aspergillus parasiticus. Can. J. Microbiol. 33, 828830.

    • Search Google Scholar
    • Export Citation
  • Wong, K. H., Hynes, M. J. and Davis, M. A. (2008): Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot. Cell 7, 917925.

    • Search Google Scholar
    • Export Citation