View More View Less
  • 1 Faculty of Agriculture, Urmia University, Urmia, Iran
  • 2 West Azarbaijan Agricultural and Natural Resources Research Center, AREEO, Urmia, Iran
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Plutella xylostella has become particularly notorious for its resistance to various insecticides. The toxicities of abamectin, hexaflumuron and indoxacarb to third instar larvae of the pest were assayed using the leaf-dipping method. The results showed that abamectin and indoxacarb with the lowest LC50 values exhibited stronger toxicity to larvae than hexaflumuron. To determine the synergism of PBO, DEM, DEF and TPP on the toxicity of tested insecticides and demonstrating possible biochemical mechanisms, an abamectin-, a hexaflu-muron- and an indoxacarb-resistant strain of P. xylostella were selected under laboratory conditions. After 10 generations of selection, the selected strains developed 14.21, 7.08, and 32.36-fold higher resistance to these insecticides, respectively. Abamectin resistance in abamectin-selected strain was suppressed with the synergists such as DEM and PBO, suggesting the involvement of monooxygeneses and glutathione S-transferase in the development of resistance in P. xylostella. Treatment with PBO and DEF significantly decreased the toxicity of hexaflumuron in the hexaflumuron-selected strain. Also, in indoxacarb-selected strain, the maximum synergism was occurred using PBO and DEF, followed by DEM and TPP. Hexaflumuron and indoxacarb synergism studies indicated in hexaflumuron resistance, monooxygenases and esterases, and in indoxacarb resistance, monooxygenases, esterases and glutathione S-transferae may be involved in the resistance mechanisms

  • 1

    Anjum, F. and Wright, D. (2016): Relative toxicity of insecticides to the crucifer pests Plutella xylostella and Myzus persicae and their natural enemies. Crop Prot. 88, 131–136.

  • 2

    Brown, T. M. and Payne, G. T. (1988): Experimental selection for insecticide resistance. J. Econ. Entomol. 81, 49–56.

  • 3

    Campos, F., Krupa, D. A. and Dybas, R. A. (1996): Susceptibility of populations of two-spotted spider mites (Acari: Tetranychidae) from Florida, Holland, and the Canary Islands to abamectin and of abamectin resistance. J. Econ. Entomol. 89, 594–601.

  • 4

    Dukre, A. S., Moharil, M. P., Ghodki, B. S. and Rao, N. G. (2009): Role of glutathione S-transferase in imparting resistance to pyrethroids in Plutella xylostella (L.). Int. J. Integr. Bio. 6, 17–21.

  • 5

    Fauziah, I. (1990): Studies on resistance to acylurea compounds in Plutella xylostella L. (Lepidoptera: Yponomeutidae). PhD thesis. University of London, 259 p.

  • 6

    Fu, B., Li, Q., Qiu, H., Tang, L., Zeng, D., Liu, K. and Gao, Y. (2018): Resistance development, stability, cross resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Pest Manage. Sci. 74, 1564–1574.

  • 7

    Furlong, M. J. and Wright, D. J. (1994): Examination of stability of restistance and cross-resistance patterns to acylurea insect growth regulators in field populations of the diamondback moth, Plutella xylostella, from Malaysia. Pestic. Sci. 42, 315–326.

  • 8

    Furlong, M. J., Wright, D. J. and Dosdall, L. M. (2013): Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 58, 517–541.

  • 9

    Gong, Y. J., Wang, Z. H., Shi, B. C., Kang, Z. J., Zhu, L., Jin, G. H. and Weig, S. J. (2013): Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. J. Insect. Sci. 13, 1–13.

  • 10

    Iqbal, M. and Wright, D. J. (1997): Evaluation of resistance, cross resistance, and synergism of abamectin and teflubenzuron in a multi-resistant field population of Plutella xylostella (Lepidoptera: Plutellidae). Bull. Entomol. Res. 87, 481–486.

  • 11

    Koou, S. Y., Chong, C. S., Vythilingam, I., Ng, L. C. and Lee, C. Y. (2014): Pyrethroid resistance in Aedesa egypti larvae (Diptera: Culicidae) from Singapore. J. Med. Entomol. 51, 170–181.

  • 12

    Liu, X., Wang, H. Y., Ning, Y. B., Qiao, K. and Wang, K. Y. (2015): Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol.108, 1978–1985.

  • 13

    Mahmoudvand, M., Abbasipour, H., Sheikhi Garjan, A. and Bandani, A. R. (2010): Effectiveness of indoxacarb and hexaflumuron on eggs, larvae and adults of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Acta Entomol. Sin. 53, 1424–1428.

  • 14

    Mahmoudvand, M., Abbasipour, H., Sheikhi Garjan, A. and Bandani, A. R. (2011): Sublethal effects of hex-aflumuron on development and reproduction of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Insect Sci. 18, 689–696.

  • 15

    Memarizadeh, N., Ghadamyari, M., Zamani, P. and Sajedi, R. H. (2013): Resistance mechanisms to abamectin in Iranian populations of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranichidae). Acarologia 53, 235–246.

  • 16

    Nehare, S., Moharil, M. P., Ghodki, B. S., Lande, G. K., Bisane, K. D., Thakare, A. S. and Barkhade, U. P. (2010): Biochemical analysis and synergistic suppression of indoxacarb resistance in Plutella xylostella L. J. Asia Pac. Entomol. 13, 91–95.

  • 17

    Raffa, K. F. and Priester, T. M. (1985): Synergists as research tools and control agents in agriculture. J. Agr. Entomol. 2, 27–45.

  • 18

    Sarfraz, M. and Keddie, B. A. (2005): Conserving the efficacy of insecticides against Plutella xylostella (L.) (Lep:Plutellidae). J. Appl. Entomol. 129, 149–157.

  • 19

    Shelton, A. M., Robertson, J. L., Tang, J. D., Perez, C., Eigenbrode, S. D., Preisler, H. K., Wilsey, W. T. and Cooley, R. J. (1993): Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringien-sis subspecies in the field. J. Econ. Entomol. 86, 697–705.

  • 20

    Shelton, A. M., Sances, F. V., Hawley, J., Tang, J. D., Boune, M., Jungers, D., Collins, H. L. and Farias, J. (2000): Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera: Plutellidae) in California in 1997. J. Econ. Entomol. 93, 931–936.

  • 21

    Sparks, T. C. and Nauen, R. (2015): IRAC: Mode of action classification and insecticide resistance management. Pest. Biochem. Physiol. 121, 122–128.

  • 22

    Stumpf, N. and Nauen, R. (2002): Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pestic. Biochem. Physiol. 72, 111–121.

  • 23

    Sun, J., Liang, P. and Gao, X. (2011): Cross resistance patterns and fitness in fufenozide resistant diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Manage. Sci. 68, 285–289.

  • 24

    Talekar, N. S. and Shelton, A. M. (1993): Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38, 275–301.

  • 25

    Troczka, B. J., Williamson, M. S., Field, L. M. and Davies, T. E. (2017): Rapid selection for resistance to di-amide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology 60, 224–233.

  • 26

    Wang, R. and Wu, Y. (2014): Dominant fitness costs of abamectin resistance in Plutella xylostella. Pest Manage. Sci. 70, 1872–1876.

  • 27

    Zhao, J. Z., Collins, H. L., Li, Y. X., Mau, R. F., Thompson, G. D., Hertlein, M. S., Andaloro, J. T., Boyken, R. and Shelton, A. M. (2006): Monitoring of diamondback moth resistance to spinosad, indoxacarb and emamectin benzoate. J. Econ. Entomol. 99, 176–181.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 19 1 0
Dec 2020 33 0 0
Jan 2021 20 2 3
Feb 2021 10 0 0
Mar 2021 14 0 0
Apr 2021 7 0 0
May 2021 0 0 0