View More View Less
  • 1 AECS, P.O.Box 6091, Damascus, Syria
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

The effect of four rhizobacterial strains on the severity of spot blotch disease caused by cochliobolus sativus was evaluated for two growing seasons under rainfed conditions. Three barley genotypes were used as host plant. All strains reduced C. sativus severity, with effect more pronounced when Pseudomonas putida BTP1 and Bacillus subtilis Bs2508 were used. The disease reduction was up to 56% in Arabi Abiad / P. putida BTP1. The grain yield was not obviously affected by the presence of the rhizobacteria, except some signifitive increase in season 2. Raising the resistance by soaking seed with rhizobacterial strains might be of ultimate value in agriculture.

  • 1

    Adam, A., Ongena, M., Duby, F., Dommes, J. and Thonart, P. (2008): Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC P.Biolo. 8, 113.

  • 2

    Arabi, M. I. E. and Jawhar, M. (2003): Pathotypes of Cochliobolus sativus (spot blotch) on barley in Syria. J. Plant Patholo. 85, 193–196.

  • 3

    Arabi, M. I. E. and Jawhar, M. (2007): Molecular and pathogenic variation identified among isolates of Cochliobolus sativus. Austral. Plant Patholo. 36, 17–21.

  • 4

    Arabi, M. I. E. and Jawhar, M. (2012a): Pathogenic groups identified among isolates of Pyrenophora graminea. J Plant Biol. Res. 1, 93–100.

  • 5

    Arabi, M. I. E. and Jawhar, M. (2012b): Alternative measure for assessing incidence of leaf stripe on barley. J. Plant Patholo. 28, 212–215.

  • 6

    Barker, P. A. H. M., Doornbos, R. F., Zamiodis, C., Berendes, R. L. and Pieterse, C. M. J. (2013): Induced systemic resistance and the rhizosphere microbiome. J. Plant Patholo. 29, 136–143.

  • 7

    Choudhary, D. K. and Johri, B. N. (2009): Interaction of Bacillus spp. and plant – with special reference to induced systemic resistance (ISR). Microbiol. Res. 164, 493–513.

  • 8

    Córdova-Campos, O., Adame-Álvarez, R. M., Acosta-Gallegos, J. A. and Heil, M. (2012): Domestication affected the basal and induced disease resistance in common bean (Phaseolus vulgaris). Eur. J. Plant Pathol. 134, 367–379.

  • 9

    Da Rocha, A. B. and Hammerschmidt, R. (2005): History and perspective on the use of disease resistance induced in horticultural crops. Horttechnology 15, 518–529.

  • 10

    De Vleesschauwer, D. and Höfte, M. (2009): Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 51, 223–281.

  • 11

    De Vleesschauwer, D., Cornelis, P. and Höfte, M. (2006): Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant Microbe In. 19, 1406–1419.

  • 12

    Fetch, T. G. and Steffenson, B. J. (1999): Rating scales for assessing infection responses of barley infected with Cochliobolus sativus. Plant Dis. 83, 213–217.

  • 13

    Ghazvini, H. and Tekauz, A. (2008): Host pathogen interactions among barley genotypes and Bipolaris sorokiniana isolates. Plant Dis. 92, 225–233.

  • 14

    Haas, D. and Défago, G. (2005): Biological control of soilborne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319.

  • 15

    Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., Pauw, E. D. and Thonart, P. (1999): Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman Design. App. Biochem. and Biotechnolo. 77, 223–233.

  • 16

    King, E. O., Ward, M. K. and Raney, D. E. (1954): Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44, 301–307.

  • 17

    Kloepper, J. W., Ryu, C. M. and Zhang, S. A. (2004): Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopatholo. 94, 1259–1266.

  • 18

    Mathre, D. E. (1997): Compendium of Barley Diseases. 2nd ed. St Paul Minnesota, American Phytopathologica Society Press, 90 p.

  • 19

    Maget-Dana, R., Thimon, L., Peypoux, F. and Ptak, M. (1992): Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74, 1047–1051.

  • 20

    Mandal, S. and Ray, R. C. (2011): Induced systemic resistance in biocontrol of plant diseases, In: A. Singh (ed.): Tomatoes: Agricultural Procedures, Pathogen Reactive Oxygen Species and Antioxidative. Springer-Ver-lag, Berlin, Heidelberg, pp. 241–260.

  • 21

    Mariutto, M., Fauconnier, M. L., Ongena, M., Laloux, M., Wathelet, J. P., du Jardin, P., Thonart, P. and Dommes, J. (2014): Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. Plant Mol. Biol. 84, 455–467.

  • 22

    Ongena, M., Daayf, F., Jacques, P., Thonart, P., Benhamou, N., Paulitz, T. C., Cornélis, P., Koedam, N. and Bélanger, R. R. (1999): Protection of cucumber against Pythium root rot by fluorescent Pseudomonads: Predominant role of induced resistance over siderophores and antibiosis. Plant Pathol. 48, 66–76.

  • 23

    Ongena, M., Giger, A., Jacques, P., Dommes, J. and Thonart, P. (2002): Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Eur. J. Plant Pathol. 108, 187–196.

  • 24

    Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J-L. and Thonart, P. (2007): Sur-factin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9, 1084–1090.

  • 25

    Peypoux, F., Bonmatin, J. M. and Wallach, J. (1999): Recent trends in the biochemistry of surfactin. Appl. Mi-crobiol. Biot. 51, 553–563.

  • 26

    Pinedra, A., Zheng, S., van Loon, J., Pieterse, C. and Dicke, M. (2010): Helping plants to deal with insects: the rol of benefical soil-borne microbes. Trends Plant Sci. 15, 507–514.

  • 27

    Reglinski, T. and Walters, D. (2009): Induced resistance for plant disease control in disease control in crops. Wiley- Blackwell, Oxford, UK, pp. 62–92.

  • 28

    Reglinski, T., Newton, A. C. and Lyon, G. D. (1994): Assessment of the ability of yeast-derived elicitors to control powdery mildew in the field. J. Plant Dis. Protect. 101, 1–10.

  • 29

    Tucci, M., Ruocco, M., De Masi, L., De Palma, M. and Lorito, M. (2011): The beneficial effect of Trichoderma spp. on tomato is modulated by plant genotype. Mol. Plant Pathol. 12, 341–354.

  • 30

    Van Loon, L. C. (2007): Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant. Pathol. 119, 243–254.

  • 31

    Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. (1998): Systemic resistance induced by rhizosphere bacteria. Ann. Rev. of Phytopatho. 36, 453–483.

  • 32

    Van Wees, S. C. M., van der Ent, S. and Pieterse, C. (2008): Plant immune responses triggered by benefical microbes. Curr. Opin. Plant. Biol. 11, 443–448.

  • 33

    Vanittanakom, N., Loeffler, W., Koch, U. and Jung, G. (1986): Fengycin – a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39, 888–901.

  • 34

    Vlot, A. C., Klesig, D. F. and Park, S. W. (2008): Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant. Biol. 11, 436–442.

  • 35

    Walters, D. R., Paterson, L., Sablou, C. and Walsh, D. J. (2011): Existing infection with Rhynchosporium secalis compromises the ability of barley to express induced resistance. Eur. J. Plant. Pathol. 130, 73–82.

  • 36

    Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C M. J., van Loon, L. C. and Bakker, P. A. H. M. (2012): Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-Diacetylphloroglucinol-producing Pseudomonas fluorescens. The Amer. Phyto. Soci. 102, 403–412.

  • 37

    Zadoks, J. C., Chang, T. T. and Konzak, C. F. (1974): A decimal code for the growth stages of cereals. Weed Res. 14, 415−421.