View More View Less
  • 1 Imam Khomeini International University, Qazvin, Iran
  • 2 Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
  • 3 Chinese University of Hong Kong, Hong Kong
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Fusarium wilt of tomato is one of the most prevalent and economically important diseases of tomato worldwide especially in tropical regions. The aims of the present study were to isolate and characterize Bacillus bacteria from tomato rhizospheric soil of various regions in Iran and determine the isolates that exhibit high levels of antagonistic efficiency against tomato Fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (Fol) and growth promotion activity. In this study, 303 Bacillus isolates were obtained from tomato rhizospheric soil. Dual culture and volatile metabolite tests were used to screen for antagonism of Bacillus isolates against Fol. Among them, 20 isolates were found to inhibit pathogen growth by 67.77% and 33.33% in dual culture and volatile metabolite tests, respectively. Based on the results of physiological tests and 16S rRNA and gyrA gene sequence analysis of 20 effective isolates, 11, seven and two isolates were identified as B. subtilis, B. velezensis and B. cereus, respectively. The results of greenhouse assessment showed that KR1-2, KR2-7 and A2-9 isolates which were characterized as Bacillus subtilis, reduced the disease index to 16.67% and promoted the plant growth by 80%. These isolates may serve as potential promising biocontrol agents against Fusarium wilt of tomato.

  • 1

    Agrios, G. N. (2005): Plant Pathology, 5th ed., Elsevier Academic Press, London, UK, 922 p.

  • 2

    Ajilogba, C. F., Babalola, O. O. and Ahmad, F. (2013): Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Studies on Ethno-Medicine 7, 205–216. https://doi.org/10.1080/09735070.2013.11886462.

  • 3

    Amini, J. (2009): Physiological race of Fusarium oxysporum f. sp. lycopersici in Kurdistan province of Iran and reaction of some tomato cultivars to race 1 of pathogen. Plant Pathol. J. 8, 68–73.

  • 4

    Bais, H. P., Fall, R. and Vivanco, J. M. (2004): Biocontrol of Bacillus subtilis against infection of arabidop-sis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319. https://doi.org/10.1104/pp.103.028712.

  • 5

    Baker, C. J., Stavely, J. R., Thomas, C. A., Saser, M. and MacFall, J. S. (1983): Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves Phaseolus vulgaris. Phytopathology 73, 1148–1152.

  • 6

    Baysal, O., Lai, D., Xu, H. H., Siragusa, M., Calışkan, M., Carimi, F., Teixeira da Silva, J. A. and Tor, M. (2013): A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS ONE, 8(1), e53182. https://doi.org/10.1371/journal.pone.0053182.

  • 7

    Bergougnoux, V. (2014): The history of tomato: From domestication to biopharming. Biotech. Adv. 32, 170–189. https://doi.org/10.1016/j.biotechadv.2013.11.003.

  • 8

    Burgess, L. W., Knight, T. E., Tesoriero, L. and Phan, H. T. (2008): Diagnostic Manual for Plant Diseases in Vietnam. ACIAR, Canberra, pp. 126–133.

  • 9

    Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B. and Shen, Q. (2011): Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 47, 495–550. https://doi.org/10.1007/s00374-011-0556-2.

  • 10

    Cawoy, H., Bettiol, W., Fickers, P. and Ongena, M. (2011): Bacillus-based biological control of plant diseases, pesticides in the modern world – Pesticides use and management. In: M. Stoytcheva (ed.): ISBN: 978-953-307-459-7, Tech, http://www.intechopen.com/books/pesticides-in-themodern-world-pesti-cides-use-and-management/bacillus-based-biological-control-of-plant-diseases.

  • 11

    Cazorla, F. M., Romero, D., Pérez-García, A., Lugtenberg, B. J. J., Vicente, A. D. and Bloemberg, G. (2007): Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J. Appl. Microbiol. 103, 1950–1959. https://doi.org/10.1111/j.1365-2672.2007.03433.x.

  • 12

    Chaurasia, B., Pandey, A., Palni, L. M., Trivedi, P., Kumar, B. and Colvin, N. (2005): Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160, 75–81. https://doi.org/10.1016/j.micres.2004.09.013.

  • 13

    Chen, F., Wang, M., Zheng, Y., Luo, J., Yang, X. and Wang, X. (2010): Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J. Microbiol. Biotechnol. 26, 675–684. https://doi.org/10.1007/s11274-009-0222-0.

  • 14

    Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, L., Losick, R. and Guo, J. H. (2013): Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15, 848–864. https://doi.org/10.1111/j.1462-2920.2012.02860.x.

  • 15

    Chowdappa, P., Kumar, S. M., Lakshmi, M. J. et al. (2013): Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control, 65, 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009.

  • 16

    Chun, J. and Bae, K. S. (2000): Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequence. Antonie van Leeuwenhoek, 78, 123–127. https://doi.org/10.1023/A:1026555830014.

  • 17

    Elanchizhiyan, K., Keerthana, U., Nagendran, K., Prabhukarthikeyan, S. R., Prabakar, K., Raguchander, T. and Karthikeyan, G. (2018): Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiol. Mol. Plant Pathol. 103, 92–101.

  • 18

    Fiddaman, P. J. and Rossall, S. (1993): The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bac-teriol., 74, 119–126.

  • 19

    Gong, A. D., Li, H. P., Yuan, Q. S., Song, X. S., Yao, W., He, W. J., Zhang, J. B., and Lio, Y. C. (2015): An-tagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE, 10(2), e0116871. https://doi.org/10.1371/journal.pone.0116871.

  • 20

    Gutierrez-Manero, F. J., Ramos, B., Probanza, A., Mehouachi, J. and Talon, M. (2001): The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberelins. Physiol. Plant. 111, 206–211. https://doi.org/10.1034/j.1399-3054.2001.1110211.x.

  • 21

    Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. and Williams, S. T. (1994): Bergey’s Manual of Determinative Bacteriology. 9th ed. The Williams and Wilkins Co., Baltimore, 787 p.

  • 22

    Idris, E. E. S., Iglesias, D. J., Talon, M. and Borriss, R. (2007): Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Interact. 20, 619–626.

  • 23

    ILO (2017): Portfolio of policy guidance note on the promotion of decent work in the rural economy: Decent and productive work in agriculture. International Labor Organization, Geneva.

  • 24

    Jasra, O. P. (2004): Preparation of genomic DNA from Bacteria. In: Y. Gupta (ed.): Techniques in Microbiology, 1st ed. Sarup and Sons Publication, India, pp. 25–26.

  • 25

    Jiang, C. H., Wu, F., Yu, Z. Y., Xie, P., Ke, H. J., Li, H. W., Yu, Y. Y. Gupta and Guo, J. H. (2015): Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol. Res. 170, 95–104. https://doi.org/10.1016/j.micres.2014.08.009.

  • 26

    Kohler, G. A., Brenot, A., Hass-Stapleton, E., Agabian, N., Deva, R. and Nigam, S. (2006): Phospholipase A2 and phospholipase B activities in fungi. Biochim. Biophys. Acta 1761, 1391–1399.

  • 27

    Kumar, S., Stecher, G. and Tamura, K. (2016): MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054.

  • 28

    Leslie, J. F., Summerell, B. A. and Bullock, S. (2006): The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 388 p.

  • 29

    Li, L., Ma, J., Li, Y., Wang, Z., Gao, T. and Wang, Q. (2012): Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Prot. 35, 29–35. https://doi.org/10.1016/j.cropro.2011.12.004.

  • 30

    Lim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., Park, H. W., Yu, N. H., Ho Kim, Y. H. and Kim, J. C. (2017): Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol. J. 33, 488–498. https://dx.doi.org/10.5423%2FPPJ.OA.04.2017.0073.

  • 31

    Meng, Q., Jiang, H. and Hao, J. J. (2016): Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biolog. Control 98, 18–26. https://doi.org/10.1016/j.biocontrol.2016.03.010.

  • 32

    Meyer, S. L. F. and Roberts, D. P. (2002): Combinations of biocontrol agents for management of plant-parasitic nematodes and soil-borne plant-pathogenic fungi. J. Nematol. 34, 1–8.

  • 33

    Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R. and Kanaya, S. (2006): Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology 152, 2801–2807. https://doi.org/10.1099/mic.0.29060-0.

  • 34

    Mui-Yun, W. (2003): Fusarium oxysporum f. sp. lycopersici (Sacc.): PP728 Soil-borne Plant Pathogen Class Project. North Carolina State University.

  • 35

    Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. (2007): Sur-factin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9, 1084–1090.

  • 36

    Qiao, J., Yu, X., Liang, X., Liu, Y., Borriss, R. and Liu, Y. (2017): Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 17, 131. https://doi.org/10.1186/s12866-017-1039-x.

  • 37

    Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K. and Nain, L. (2011): Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 61, 893–900. https://doi.org/10.1007/s13213-011-0211-z.

  • 38

    Raupach, G. S. and Kloepper, J. W. (1998): Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogen. Phytopathology 88, 1158–1164. https://doi.org/10.1094/PHYTO.1998.88.11.1158.

  • 39

    Richardson, A. E., Barea, J. M., McNeill, A. M. and Prigent-Combaret, C. (2009): Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321, 305–339. https://doi.org/10.1007/s11104-009-9895-2.

  • 40

    Riungu, G., Muthomi, J. W., Narla, R. D., Wagacha, J. M. and Gathumbi, J. K. (2008): Management of Fusarium head blight of wheat and deoxynivalenol accumulation using antagonistic microorganisms. Plant Pathol. J. 7, 13–19. http://dx.doi.org/10.3923/ppj.2008.13.19.

  • 41

    Roberts, M. S., Nakamura, L. K. and Cohan, F. M. (1994): Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. System. Bacteriol., 44, 256–264.

  • 42

    Romero, D., Pérez-García, A., Rivera, M. E., Cazorla, F. M. and de Vicente, A. (2004): Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl. Micro-biol. Biotechnol. 64, 263–269. https://doi.org/10.1007/s00253-003-1439-8.

  • 43

    Shafi, J., Tian, H. and Ji, M. (2017): Bacillus species as versatile weapons for plant pathogens: A review. Bio-technol. Equip. 31, 446–459. https://doi.org/10.1080/13102818.2017.1286950.

  • 44

    Shanmugam, V., Atri, K., Gupta, S., Kanoujia, N. and Singh Naruka, D. (2011): Selection and differentiation of Bacillus spp. Antagonistic to Fusarium oxysporum f. sp. lycopersici and Alternaria solani infecting tomato. Folia Microbiol., 56, 170–177. https://doi.org/10.1007/s12223-011-0031-3.

  • 45

    Sharma, R., Chauhan, A. and Shirkot, C. K. (2015): Characterization of plant growth promoting Bacillus strains and their potential as crop protectants against Phytophthora capsici in tomato. Biol. Agric. Hortic. 31, 230–244. https://doi.org/10.1080/01448765.2015.1009860.

  • 46

    Shoda, M. (2000): Bacterial control of plant diseases. J. Biosci. Bioeng. 89, 515–521. https://doi.org/10.1016/ S1389-1723(00)80049-3.

  • 47

    Stein, T. (2005): Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x.

  • 48

    Turner, J. T. and Backman, P. A. (1991): Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75, 347–353.

  • 49

    Turner, S., Pryer, K. M., Miao, V. P. W. and Palmer, J. D. (1999): Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot Microbiol. 46, 327–338.

  • 50

    Wang, X., Wang, L., Wang, J., Jin, P., Liu, H. and Zheng, Y. (2014): Bacillus cereus AR156- induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLos ONE, 9 (11): e112494. https://doi.org/10.1371/journal.pone.0112494.

  • 51

    Whipps, J. M. (2001): Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–512. https:// doi.org/10.1093/jexbot/52.suppl_1.487.

  • 52

    Zhang, S., Raza, W., Yang, X., Hu, J., Huang, Q., Xu, Y., Liu, X., Ran, W. and Shen, Q. (2008): Control of Fusa-rium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol. Fertil. Soils 44, 1073–1080. https://doi.org/10.1007/s00374-008-0296-0.

 

The author instruction is available in PDF.
Please, download the file from HERE.

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Elsevier GEO Abstracts
  • Globals Health
  • Referativnyi Zhurnal
  • SCOPUS
  • Zoological Abstracts

 

 

2019  
Scimago
H-index
19
Scimago
Journal Rank
0,177
Scimago
Quartile Score
Insect Science Q4
Plant Science Q4
Scopus
Cite Score
66/103=0,6
Scopus
Cite Score Rank
Insect Science 125/142 (Q4)
Plant Science 344/431 (Q4)
Scopus
SNIP
0,240
Scopus
Cites
212
Scopus
Documents
24
Acceptance
Rate
35%

 

Language: English

Founded in 1966
Publication: One volume of two issues annually
Publication Programme: 2020. Vol. 55.

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Barna, Balázs

Editorial Board

      Benedek, P. (Mosonmagyaróvár)
      Hernández J.A. (Murcia, Spain)
      Érsek, T. (Mosonmagyaróvár)
      Francke, W. (Hamburg)
      Hornok, L. (Gödöllő)
      Horváth, J. (Keszthely)
      Király, Z. (Budapest)
      Kiss, L. (Budapest)
      Kogel, K.-H. (Giessen)
      Kőmíves, T. (Budapest)
      Palkovics, L. (Budapest)
      Schoelz, J. E. (Columbia, Missouri)
      Schulz, S. (Braunschweig)
      Seybold, S. (Davis)
      Skoczowski A. (Cracow)
      Szőcs, G. (Budapest)
      Tóth, M. (Budapest)
      Virányi, F. (Gödöllő)
      Diaz-Vivancos P. (Murcia, Spain)

Acta Phytopathologica et Entomologica Hungarica
P.O. Box 102
H-1525 Budapest, Hungary
Phone: (36 1) 487 7534
Fax: (36 1) 487 7555
E-mail: acta@agrar.mta.hu