View More View Less
  • 1 Faculty of Sciences BP. 133, Ibn Tofaïl University, Kenitra, Morocco
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Thirty Trichoderma isolates isolated from compost, various crops and soil with roots of adjacent sites to the phosphate mines of Morocco, were tested in vitro for their potential to solubilize phosphorus from phosphate rock. The qualitative assessment of phosphate solubilization by Trichoderma isolates was performed on Modified Pikovskaya Agar (MPA) solid medium. The visual observation of the 3- and 6-day-old cultures did not show any clear zone around the colony. However, all the isolates were able to grow on the culture medium 3 days after incubation, the maximum recorded diameter was 58.6 mm for isolate TR-B 98 (3) and the minimum value was 34.8 mm for isolate TS-EM-98 (2). After 6 days, they showed good radial growth that exceeded 79.8 mm with variable appearance of the mycelial density such as the isolates TS-B 98, TS-EM-98 (1) and TR-CB 2000 (1) that presented, respectively, high, regular and low mycelial density. Also, the Trichoderma isolates produced variable number of conidia on MPA medium. Quantitative estimation on the Modified Pikovskaya Broth (MPB) liquid medium showed a variable potential of the Trichoderma isolates to solubilize phosphate when the amount of soluble phosphorus remained low in the liquid medium without the fungus (0.26 mgL−1). The maximum concentration of soluble phosphorus was 11.92 mgL−1 with percentage of soluble phosphorus equal to 95.39% recorded by the isolate TR-TB 2000 after 9 days of incubation, followed by the isolates TR-B 98 (3), TS-B 98 and TR-EM 2 respectively, 11.20, 10.47 and 9.61 mgL−1 and 89.6, 83.76 and 76.38%. In addition, treatments with Trichoderma isolates provided a lower final broth pH which varied between 6.81 for TOL isolate and 3.40 for TS-B-2000 (2) compared to initial pH (7.2). The isolates that proved potent for phosphate solubilization displayed the highest fresh and dry weights such as TR-TB 2000 (FW = 4.11 g and DW = 2.56 g), while the lowest fresh and dry weight were noted in the weakest isolates for phosphate solubilization such as T27 (FW = 1.025 g and DW = 0.58 g).

The high solubilization potential of Trichoderma isolates can be exploited for the solubilization of fixed phosphorus present in the soil, thus improving soil fertility and plant growth.

  • Achá, C. (2008): Aislamiento y multiplicación de cepas nativas de Trichoderma sp y su evaluación como biocontrolador de Fusarium sp y Rhizoctonia solani en plantas de tomate. Tesis de Licenciatura en Ingeniería Ambiental, pp. 194.

    • Search Google Scholar
    • Export Citation
  • Afzal, A. and Asghari, B., (2008): Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int. J. Agri. Biol., 10, 8588.

    • Search Google Scholar
    • Export Citation
  • Ahemad, M., Zaidi, A., Khan, M. S. and Oves, M. (2009): Biological importance of phosphorus and phosphate solubilizing microorganisms—an overview. In: M. S. Khan and A. Zaidi (eds): Phosphate Solubilizing Microbes for Crop Improvement. Nova, New York, pp. 14.

    • Search Google Scholar
    • Export Citation
  • Akintokun, A. K., Akande, G. A., Akintokun, P. O., Popoola, T. O. S. and Babalola, A. O. (2007): Solubilization of insoluble phopshate by organic acid producing fungi isolated from Nigerian soil. International J. Soil Science 2, 301307.

    • Search Google Scholar
    • Export Citation
  • Alam, S., Khalil, S., Ayub, N. and Rashid, M. (2002): In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. International J. Agriculture and Biology 4, 454458.

    • Search Google Scholar
    • Export Citation
  • Altomare, C., Norvell, W. W., Bjorkman, T. and Harman G. E., (1999): Solubilization of phosphates and micro-nutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. and Environ. Microbiology 65, 29262933.

    • Search Google Scholar
    • Export Citation
  • Balemi, T. and Negisho, K. (2012): Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J. Soil Sci. Plant Nutr., 12, 547556.

    • Search Google Scholar
    • Export Citation
  • Davet, P. (1979): Technique pour l'analyse des populations de Trichoderma et de Gliocladium virens dans le sol. Ann. Phytopathol. 11, 529533.

    • Search Google Scholar
    • Export Citation
  • Davet, P. (1996): Vie microbienne du sol et production végétale. Ed. INRA, Paris, 380 p.

  • De Santiago, A., García-López, A. M., Quintero, J. M., Avilés, M. and Delgado, A. (2013): Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biol. Biochem. 57, 598605.

    • Search Google Scholar
    • Export Citation
  • De Trogoff, H. and Ricard, J. L. (1976): Biological control of Verticillium malthousei by Trichoderma viride spray on casing soil in commercial mushroom production [Fungal diseases, biological control]. Plant Dis. Rep. 60, 677680.

    • Search Google Scholar
    • Export Citation
  • Dumitras, L. and Fratilescu-Sesan, T. (1980): Aspects of the antagonism of Trichoderma viride to Pythium debaryanum. Rev. Plant Pathol. 59, 1571.

    • Search Google Scholar
    • Export Citation
  • Elad, Y., Chet, I. and Henis, Y. A. (1981): A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9, 5967.

    • Search Google Scholar
    • Export Citation
  • Fernández, L., Zalba, P., Gómez, M. and Sagardoy, M. (2007): Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fertil. Soils 43, 805809.

    • Search Google Scholar
    • Export Citation
  • Fiske, C. H. and Subbarow, Y. (1925): The colorimetric determination of phosphorus. J. Biological Chemistry 66, 375400.

  • Gindrat, D., van der Hoeven, E. and Moody, A. R. (1977): Control of Phomopsis sclerotioides with Gliocladium roseum or Trichoderma. Neth. J. PL. Path. 83, 9438.

    • Search Google Scholar
    • Export Citation
  • Gravel, V., Antoun, H. and Tweddell, R. J. (2007): Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochemistry 39, 19681977.

    • Search Google Scholar
    • Export Citation
  • Hannan, N. R., Segeritz, C. P., Touboul, T. and Vallier, L. (2013): Production of hepatocyte-like cells from human pluripotent stem cells. Nat. Protoc. 8, 430437.

    • Search Google Scholar
    • Export Citation
  • Harman, G. E. (2000): Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84, 377393.

    • Search Google Scholar
    • Export Citation
  • Harman, G. E. (2006): Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96, 190194.

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. M. and Lorito, M. (2004): Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2, 4356.

    • Search Google Scholar
    • Export Citation
  • Holford, I. C. R. (1997): Soil phosphorus: its measurement and its uptake by plants. Australian J. Soil Research 35, 227239.

  • Illmer, P. and Schinner, F. (1992): Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. and Biochem., 24, 389395.

    • Search Google Scholar
    • Export Citation
  • Johnston, H. W. (1952): The solubilization of phosphate: the action of various organic compounds on dicalcium and tri-calcium phosphate. New Zealand J. Sci. Technol. 33, 436444.

    • Search Google Scholar
    • Export Citation
  • Kapgate, C. A. and Rane, V. I. (2016): Antagonistic action of Trichoderma sp. on Colletorichum graminicola causing anthracnose on sugarcane in Gondia district (M.S.). Int. J. Pure App. Biosci. 4, 133136.

    • Search Google Scholar
    • Export Citation
  • Kapri, A. and Tewari, L. (2010): Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz. J. Microbiol. 41, 787795.

    • Search Google Scholar
    • Export Citation
  • Kelley, W. D. (1976): Evaluation of Trichoderma harzianum impregnated clay granules as biocontrol for Phytophthora cinamomi causing damping-off of pine seedling. Phytopathology 66, 10231027.

    • Search Google Scholar
    • Export Citation
  • Khan, M. S., Zaidi, A., Wani, P. A., Ahemad, M. and Oves, M. (2009): Functional diversity among plant growth-promoting rhizobacteria. In: M. S. Khan, A. Zaidi and J. Musarrat (eds): Microbial Strategies for Crop Improvement. Springer, Berlin, pp. 105132.

    • Search Google Scholar
    • Export Citation
  • Kpomblekou, A. K. and Tabatabai, M. A. (1994): Effect of organic acids on the release of phosphorus from phosphate rocks. Soil Sci. 158, 112118.

    • Search Google Scholar
    • Export Citation
  • Lang, S. F., Destain, J., Druart, P., Ongena, M. and Thonart, P. (2016): Les microorganismes dans le maintien de l'équilibre et la réhabilitation des écosystèmes de mangrove pollués par les hydrocarbures. Revue bibliographique. Int. J. Biol. Chem. Sci. 10, 22682284.

    • Search Google Scholar
    • Export Citation
  • Machado, R. G., , E. L. S., Damasceno, R. G., Hahn, L., Almeida, D., Moraes, T. and Camargo, F.A.O., Reartes D. S. (2011): Promotion of growth in plants Lotus corniculatus L. (birdsfoot trefoil) and Avena strigosa Schreb (black oat), by inoculation with rhizobia and Trichoderma harzianum. Sci. Nat. 33, 111126.

    • Search Google Scholar
    • Export Citation
  • Nautiyal, C. S. (1999): An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. 170, 265270.

    • Search Google Scholar
    • Export Citation
  • Oliveira, A. G., Chagas, Jr. A. F., Santos, G. R., Miller, L. O. and Chagas, L. F. B. (2012): Potential phosphate solubilization and AIA production of Trichoderma spp. Green J. Agroecol. Sust. Develop. 7, 149155.

    • Search Google Scholar
    • Export Citation
  • Peleg, Y., Addison, R., Aramaya, R. and Metzenberg, R. L. (1996): Translocation of Neurospora crassa transcription factor NUC-1 into the nucleus is induced by phosphate limitation. Fungal Genet. Biol. 20, 185191.

    • Search Google Scholar
    • Export Citation
  • Pikovskaya, R. I. (1948): Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17, 362370.

    • Search Google Scholar
    • Export Citation
  • Pradham, N. and Sukla, L. B. (2005): Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African J. Biotechnology 5, 850854.

    • Search Google Scholar
    • Export Citation
  • Promwee, A., Issarakraisila, M., Intana, W., Chamswarng, C. and Yenjit, P. (2014): Phosphate solubilization and growth promotion of pubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. J. Agric. Sci. 6, 19169760.

    • Search Google Scholar
    • Export Citation
  • Rashid, M., Khalil, S., Ayub, N., Alam, S. and Latif, F. (2004): Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan J. Biol. Sci. 7, 187196.

    • Search Google Scholar
    • Export Citation
  • Rawat, R. and Tewari, L. (2011): Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp. Curr. Microbiol. 62, 15211526.

    • Search Google Scholar
    • Export Citation
  • Rishbeth, J. (1979): Modern aspects of biological control of Fomes and Armillaria. Eur. J. For. Path. 9, 331340.

  • Santos, H. A., Mello, S. C. M. and Peixoto, J. R. (2010): Association of isolates of Trichoderma spp. and indole-3-butyric acid (iba) in promoting root and growth of passion. Biosci. J. 26, 966972 (in Portuguese).

    • Search Google Scholar
    • Export Citation
  • Saravanakumar, K., Arasu, V. S. and Kathiresan, K. (2013): Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquatic Botany 104, 101105.

    • Search Google Scholar
    • Export Citation
  • Schachtman, D. P., Reid, R. J. and Ayling, S. M. (1998): Phosphate uptake by plants: from soil to cell. Plant Physiology 116, 447453.

    • Search Google Scholar
    • Export Citation
  • Shenoy, V. V. and Kalagudi, G. M. (2005): Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol. Adv. 23, 501513.

    • Search Google Scholar
    • Export Citation
  • Silva Filho, G. N., Narloch, C. and Scharf, R. (2002): Solubilization of natural phosphates by microorganisms isolated from Pinus and Eucalyptus plantations in Santa Catarina. Brazil. Pesqui. Agropecu. Bras. 37, 847854.

    • Search Google Scholar
    • Export Citation
  • Sobal, M., Martinez-carrera, D., Morales, P. and Roussos, S. (2007): Classical Characterization of mushroom genetic resources from temperates and tropical region of Mexico. Micol. Apl. Int. 19, 1535.

    • Search Google Scholar
    • Export Citation
  • Soushie, El., Azcon, R., Barea, J. M., Saggin, J. and Silva, E. M. R. (2007): Solubilização de fosfatos em meio sólido e líquido por bactérias e fungos do solo. Pesq. Agropec Bras. 40, 11491152.

    • Search Google Scholar
    • Export Citation
  • Sujatha, E., Girisham, S. and Reddy, S. M. (2004): Phosphate solubilization by thermophilic microorganisms. Indian J. Microbiol., 44, 101104.

    • Search Google Scholar
    • Export Citation
  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A. and Bashan, Y. (2000): Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils 30, 460468.

    • Search Google Scholar
    • Export Citation
  • Vinalea, F., Sivasithamparamb, K., Ghisalbertic, M. L., Marra, R., Woo, S. L and Lorito, M. (2008): Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry 40, 110.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Wang, Y., Tian, J., Lim, B. L., Yan, X. and Liao, H. (2009): Over expressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol. 151, 233240.

    • Search Google Scholar
    • Export Citation
  • Yadav, J., Verma, J. P. and Tiwari, K. N. (2011): Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J. Biol. Sci. 4, 291299.

    • Search Google Scholar
    • Export Citation
  • Yedidia, I., Benhamou, N. and Chet, I. (1999): Induction of defence responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. and Environ. Microbiol., 65, 10611070.

    • Search Google Scholar
    • Export Citation
  • Zeroual, Y., Chadghan, R., Hakam, A. and Kossir, A. (2012): Biosolubilization of mineral insoluble phosphates by immobilized fungi (Aspergillus niger) in fluidized bed bioreactor. J. Biotechnol. Biomaterial S6:004. doi:10.4172/2155-952X.S6-004.

    • Search Google Scholar
    • Export Citation