View More View Less
  • 1 University of Karachi, Karachi-75270, Pakistan
  • 2 University of Karachi, Karachi-75270, Pakistan
Restricted access

Purchase article

USD  $20.00

1 year subscription (Individual Only)

USD  $542.00

Bacillus thuringiensis (B.t) is well known for its biocontrol potential against a variety of insects. Nematicidal potential of ten B.t isolates was tested against root-knot nematodes (Meloidogyne javanica (Treub) Chitwood) in vitro, under greenhouse as well as in field conditions. Eggs and second stage juveniles (J2) were exposed to 5 and 25% concentrations of bacterial cell-free aqueous extracts up to 96 h. B.t isolates showed lesser degrees of nematicidal activity at 5% concentration. However, some B.t isolates (B.t-14, B.t-16 and B.t-64) greatly reduced egg hatching and increased J2. All B.t isolates revealed suppressed egg hatching and increased mortality of J2 at 25% concentration. Soil applications with most of the B.t isolates under greenhouse and field conditions significantly improved height and fresh weights of root-knot nematode parasitized okra (Abelmoschus esculentus (L.) Moench). Some isolates, including B.t-64 reduced the number of galls and egg masses. B.t-64 reduced gall formation up to 70% under greenhouse conditions. However, 29% of decrease was observed in field conditions. Similarly, B.t-64 treated plants showed a 56% decreased in eggs/egg mass in a field experiment. Population of root-knot nematodes in the rhizosphere was decreased up to 61% in the field experiment as compared to control.

  • Abbasi, M. W., Ahmed, N., Zaki, M. J., Shuakat, S. S. and Khan, D. (2014): Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant Soil 375, 159173.

    • Search Google Scholar
    • Export Citation
  • Adam, M., Heuer, H. and Hallmann, J. (2014): Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PloS one 9, e90402.

    • Search Google Scholar
    • Export Citation
  • Akram, W., Anjum, T., Ali, B. and Ahmad, A. (2013): Screening of native Bacillus strains to induce systemic resistance in tomato plants against fusarium wilt in split root system and its field applications. Int. J. Agric. Biol. 15, 12891294.

    • Search Google Scholar
    • Export Citation
  • Bai, Y., D'Aoust, F., Smith, D. L. and Driscoll, B. T. (2002): Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48, 230238.

    • Search Google Scholar
    • Export Citation
  • Bernhard, K., Jarrett, P., Meadows, M., Butt, J., Ellis, D., Roberts, G., Pauli, S., Rodgers, P. and Burges, H. (1997): Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J. Invert. Pathol. 70, 5968.

    • Search Google Scholar
    • Export Citation
  • Bottjer, K. P., Bone, L. W. and Gill, S. S. (1985): Nematoda: susceptibility of the egg to Bacillus thuringiensis toxins. Exp. Parasitol. 60, 239244.

    • Search Google Scholar
    • Export Citation
  • Bressan, W. and Borges, M. T. (2004): Delivery methods for introducing endophytic bacteria into maize. Bio-Control. 49, 315322.

  • Cayrol, J. C., Djian, C. and Pijarowski, L. (1989): Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue de Nematol. 12, 331336.

    • Search Google Scholar
    • Export Citation
  • Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R. and Reva, O. (2007): Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 10071014.

    • Search Google Scholar
    • Export Citation
  • Daykin, M. and Hussey, R. (1985): Staining and histopathological techniques in nematology. In: K. R. Barker, C. C. Carter and J. N. Sasser (eds): An Advanced Treatise on Meloidogyne. Vol. II. Methodology, North Carolina State University Graphics, pp. 3948.

    • Search Google Scholar
    • Export Citation
  • De-Bashan, L. E., Hernandez, J. P., Bashan, Y. and Maier, R. M. (2010): Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ. Exper. Bot. 69, 343352.

    • Search Google Scholar
    • Export Citation
  • Dhawan, S., Kaur, S. and Singh, A. (2004): Effect of Bacillus thuringiensis on the mortality of root-knot nematode, Meloidogyne incognita. Indian J. Nematol. 34, 9899.

    • Search Google Scholar
    • Export Citation
  • Flor-Peregrín, E., Azcón, R., Martos, V., Verdejo-Lucas, S. and Talavera, M. (2014): Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato. Biocontrol Sci. Techn. 24, 11221136.

    • Search Google Scholar
    • Export Citation
  • Gomez, K. A. and Gomez, A. A. (1984): Statistical Procedures for Agricultural Research. John Wiley and Sons, 2 nd ed. pp. 1680.

  • Hill, K. K., Ticknor, L. O., Okinaka, R. T., Asay, M., Blair, H., Bliss, K. A., Laker, M., Pardington, P. E., Richardson, A. P. and Tonks, M. (2004): Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 70, 10681080.

    • Search Google Scholar
    • Export Citation
  • Hussain, M. A., Mukhtar, T., Kayani, M. Z., Aslam, M. N. and Haque, M. (2012): A survey of okra (Abelmoschus esculentus) in the Punjab province of Pakistan for the determination of prevalence, incidence and severity of root-knot disease caused by Meloidogyne spp. Pak. J. Bot. 44, 20712075.

    • Search Google Scholar
    • Export Citation
  • Hussey, R. S. and Barker, K. R. (1973): A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Rep. 57, 10251028.

    • Search Google Scholar
    • Export Citation
  • Keren-Zur, M., Antonov, J., Bercovitz, A., Feldman, K., Husid, A., Kenan, G., Marcov, N. and Rebhun, M. (2000): Bacillus firmus formulations for the safe control of root-knot nematodes. Proc. of the The BCPC Conference: Pests and Diseases. Vol. 1. Proc. of an International Conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000; British Crop Protection Council, pp. 4752.

    • Search Google Scholar
    • Export Citation
  • Khan, M. Q., Abbasi, M. W., Zaki, M. J. and Khan, S. A. (2010): Evaluation of Bacillus thuringiensis isolates against root-knot nematodes following seed application in okra and mungbean. Pak. J. Bot. 42, 29032910.

    • Search Google Scholar
    • Export Citation
  • Khan, M. Q., Zaki, M. J. and Khan, D. (2011): The influence of moisture and temperature on the survival of Bacillus thuringiensis Berliner in autoclaved soil. Int. J. Biol. Biotechn. 8, 225232.

    • Search Google Scholar
    • Export Citation
  • Khyami-Horani, H. and Al-Banna, L. (2006): Efficacy of Bacillus thuringiensis jordanica against Meloidogyne javanica infecting tomato. Phytopath. Medit. 45, 153157.

    • Search Google Scholar
    • Export Citation
  • Li, B., Xie, G., Soad, A. and Coosemans, J. (2005): Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria. J. Zhejiang Univ. Sci. 6, 496501.

    • Search Google Scholar
    • Export Citation
  • Li, X., Wei, J. Z., Tan, A. and Aroian, R. V. (2007): Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotech. J. 5, 455464.

    • Search Google Scholar
    • Export Citation
  • Li, X. Q., Tan, A., Voegtline, M., Bekele, S., Chen, C. S. and Aroian, R. V. (2008): Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol. Control. 47, 97102.

    • Search Google Scholar
    • Export Citation
  • Lian, L., Tian, B., Xiong, R., Zhu, M., Xu, J. and Zhang, K. (2007): Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett. Appl. Microbiol. 45, 262269.

    • Search Google Scholar
    • Export Citation
  • Luc, M., Sikora, R. A. and Bridge, J. (2005): Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. 2nd ed., Cabi Publishing, Wallingford, U.K., pp. 1896.

    • Search Google Scholar
    • Export Citation
  • Medina, A., Probanza, A., Mañero, F. G. and Azcón, R. (2003): Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl. Soil Ecol. 22, 1528.

    • Search Google Scholar
    • Export Citation
  • Mizuki, E., Ichimatsu, T., Hwang, S. H., Park, Y., Saitoh, H., Higuchi, K. and Ohba, M. (1999): Ubiquity of Bacillus thuringiensis on phylloplanes of arboreous and herbaceous plants in Japan. J. Appl. Microbiol. 86, 979984.

    • Search Google Scholar
    • Export Citation
  • Mohammed, S., El-Saedy, M. A., Enan, M. R., Ibrahim, N. E., Ghareeb, A. and Moustafa, S. A. (2008): Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J. Cell Mol. Biol. 7, 5766.

    • Search Google Scholar
    • Export Citation
  • Oka, Y. (2010): Mechanisms of nematode suppression by organic soil amendments: a review. Appl. Soil Ecol. 44, 101115.

  • Oostendorp, M. and Sikora, R. (1990): In vitro interrelationships between rhizosphere bacteria and Heterodera schachtii. Revue de Nématol. 13, 269274.

    • Search Google Scholar
    • Export Citation
  • Payne, J. M. (1992): US Patent No. 5,151,363. Washington, DC: U.S. Patent and Trademark Office.

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W. and Kloepper, J. W. (2003): Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100, 49274932.

    • Search Google Scholar
    • Export Citation
  • Sela, S., Schickler, H., Chet, I. and Spiegel Y. (1998): Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur. J. Plant Pathol. 104, 5967.

    • Search Google Scholar
    • Export Citation
  • Sharma, R. D. (1994): Bacillus thuringiensis: A biocontrol agent of Meloidogyne incognita on barley. Nematol. Bras. 18, 7984.

  • Shishido, M., Petersen, D. J., Massicotte, H. B. and Chanway, C. P. (1996): Pine and spruce seedling growth and mycorrhizal infection after inoculation with plant growth promoting Pseudomonas strains. FEMS Microbiol. Ecol. 21, 109119.

    • Search Google Scholar
    • Export Citation
  • Siddiqui, Z. and Mahmood, I. (1999): Role of bacteria in the management of plant parasitic nematodes: a review. Biores. Techn. 69, 167179.

    • Search Google Scholar
    • Export Citation
  • Taylor, D. P. and Netscher, C. (1974): An improved technique for preparing perennial pattern of Meloidogyne spp. Nematol. 20, 268.

  • Terefe, M., Tefera, T. and Sakhuja, P. (2009): Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J. Invert. Pathol. 100, 9499.

    • Search Google Scholar
    • Export Citation
  • Townshend, J. (1962): An examination of the efficiency of the Cobb decanting and sieving method. Nematologica 8, 293300.

  • Van-Loon, L. (2007): Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119, 243254.

  • Van-Loon, L. and Bakker, P. A. H. M. (2007): Root-associated bacteria inducing systemic resistance. In: S. S. Gnanamanickam (ed.): Plant-Associated Bacteria. Springer, pp. 269316.

    • Search Google Scholar
    • Export Citation
  • Vilas-Bôas, G. T. and Lemos, M. V. F. (2004): Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Can. J. Microbiol. 50, 605613.

    • Search Google Scholar
    • Export Citation
  • Vilas-Bôas, L. A., Vilas-Bôas, G. F., Saridakis, H. O., Lemos, M. V. F., Lereclu, D. and Arantes, O. M. (2000): Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol. Ecol. 31, 255259.

    • Search Google Scholar
    • Export Citation
  • Vovlas, N., Rapoport, H. F., Jiménez-Díaz, R. M. and Castillo, P. (2005): Differences in feeding sites induced by root-knot nematodes, Meloidogyne spp., in chickpea. Phytopathol. 95, 368375.

    • Search Google Scholar
    • Export Citation
  • Wang, M., Yang, J. and Zhang, K. Q. (2006): Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Can. J. Microbiol. 52, 130139.

    • Search Google Scholar
    • Export Citation
  • Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C. and Aroian, R. V. (2003): Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. 100, 27602765.

    • Search Google Scholar
    • Export Citation
  • Yap, C. A. (2013): Screening for nematicidal activities of Bacillus species against root knot nematode (Meloidogyne incognita). Am. J. Exp. Agri. 3, 794805.

    • Search Google Scholar
    • Export Citation
  • Zuckerman, B. M., Dicklow, M. B. and Acosta, N. (1993): A strain of Bacillus thuringiensis for the control of plant-parasitic nematodes. Biocontrol Sci. Techn. 3, 4146.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 51 9
Jul 2020 30 2 2
Aug 2020 29 0 0
Sep 2020 17 4 7
Oct 2020 30 0 0
Nov 2020 22 2 2
Dec 2020 0 0 0