Bacillus thuringiensis (B.t) is well known for its biocontrol potential against a variety of insects. Nematicidal potential of ten B.t isolates was tested against root-knot nematodes (Meloidogyne javanica (Treub) Chitwood) in vitro, under greenhouse as well as in field conditions. Eggs and second stage juveniles (J2) were exposed to 5 and 25% concentrations of bacterial cell-free aqueous extracts up to 96 h. B.t isolates showed lesser degrees of nematicidal activity at 5% concentration. However, some B.t isolates (B.t-14, B.t-16 and B.t-64) greatly reduced egg hatching and increased J2. All B.t isolates revealed suppressed egg hatching and increased mortality of J2 at 25% concentration. Soil applications with most of the B.t isolates under greenhouse and field conditions significantly improved height and fresh weights of root-knot nematode parasitized okra (Abelmoschus esculentus (L.) Moench). Some isolates, including B.t-64 reduced the number of galls and egg masses. B.t-64 reduced gall formation up to 70% under greenhouse conditions. However, 29% of decrease was observed in field conditions. Similarly, B.t-64 treated plants showed a 56% decreased in eggs/egg mass in a field experiment. Population of root-knot nematodes in the rhizosphere was decreased up to 61% in the field experiment as compared to control.
Abbasi, M. W., Ahmed, N., Zaki, M. J., Shuakat, S. S. and Khan, D. (2014): Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant Soil 375, 159–173.
Adam, M., Heuer, H. and Hallmann, J. (2014): Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PloS one 9, e90402.
Akram, W., Anjum, T., Ali, B. and Ahmad, A. (2013): Screening of native Bacillus strains to induce systemic resistance in tomato plants against fusarium wilt in split root system and its field applications. Int. J. Agric. Biol. 15, 1289–1294.
Bai, Y., D'Aoust, F., Smith, D. L. and Driscoll, B. T. (2002): Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48, 230–238.
Bernhard, K., Jarrett, P., Meadows, M., Butt, J., Ellis, D., Roberts, G., Pauli, S., Rodgers, P. and Burges, H. (1997): Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J. Invert. Pathol. 70, 59–68.
Bottjer, K. P., Bone, L. W. and Gill, S. S. (1985): Nematoda: susceptibility of the egg to Bacillus thuringiensis toxins. Exp. Parasitol. 60, 239–244.
Bressan, W. and Borges, M. T. (2004): Delivery methods for introducing endophytic bacteria into maize. Bio-Control. 49, 315–322.
Cayrol, J. C., Djian, C. and Pijarowski, L. (1989): Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue de Nematol. 12, 331–336.
Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R. and Reva, O. (2007): Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014.
Daykin, M. and Hussey, R. (1985): Staining and histopathological techniques in nematology. In: K. R. Barker, C. C. Carter and J. N. Sasser (eds): An Advanced Treatise on Meloidogyne. Vol. II. Methodology, North Carolina State University Graphics, pp. 39–48.
De-Bashan, L. E., Hernandez, J. P., Bashan, Y. and Maier, R. M. (2010): Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ. Exper. Bot. 69, 343–352.
Dhawan, S., Kaur, S. and Singh, A. (2004): Effect of Bacillus thuringiensis on the mortality of root-knot nematode, Meloidogyne incognita. Indian J. Nematol. 34, 98–99.
Flor-Peregrín, E., Azcón, R., Martos, V., Verdejo-Lucas, S. and Talavera, M. (2014): Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato. Biocontrol Sci. Techn. 24, 1122–1136.
Gomez, K. A. and Gomez, A. A. (1984): Statistical Procedures for Agricultural Research. John Wiley and Sons, 2 nd ed. pp. 1–680.
Hill, K. K., Ticknor, L. O., Okinaka, R. T., Asay, M., Blair, H., Bliss, K. A., Laker, M., Pardington, P. E., Richardson, A. P. and Tonks, M. (2004): Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 70, 1068–1080.
Hussain, M. A., Mukhtar, T., Kayani, M. Z., Aslam, M. N. and Haque, M. (2012): A survey of okra (Abelmoschus esculentus) in the Punjab province of Pakistan for the determination of prevalence, incidence and severity of root-knot disease caused by Meloidogyne spp. Pak. J. Bot. 44, 2071–2075.
Hussey, R. S. and Barker, K. R. (1973): A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Rep. 57, 1025–1028.
Keren-Zur, M., Antonov, J., Bercovitz, A., Feldman, K., Husid, A., Kenan, G., Marcov, N. and Rebhun, M. (2000): Bacillus firmus formulations for the safe control of root-knot nematodes. Proc. of the The BCPC Conference: Pests and Diseases. Vol. 1. Proc. of an International Conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000; British Crop Protection Council, pp. 47–52.
Khan, M. Q., Abbasi, M. W., Zaki, M. J. and Khan, S. A. (2010): Evaluation of Bacillus thuringiensis isolates against root-knot nematodes following seed application in okra and mungbean. Pak. J. Bot. 42, 2903–2910.
Khan, M. Q., Zaki, M. J. and Khan, D. (2011): The influence of moisture and temperature on the survival of Bacillus thuringiensis Berliner in autoclaved soil. Int. J. Biol. Biotechn. 8, 225–232.
Khyami-Horani, H. and Al-Banna, L. (2006): Efficacy of Bacillus thuringiensis jordanica against Meloidogyne javanica infecting tomato. Phytopath. Medit. 45, 153–157.
Li, B., Xie, G., Soad, A. and Coosemans, J. (2005): Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria. J. Zhejiang Univ. Sci. 6, 496–501.
Li, X., Wei, J. Z., Tan, A. and Aroian, R. V. (2007): Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotech. J. 5, 455–464.
Li, X. Q., Tan, A., Voegtline, M., Bekele, S., Chen, C. S. and Aroian, R. V. (2008): Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol. Control. 47, 97–102.
Lian, L., Tian, B., Xiong, R., Zhu, M., Xu, J. and Zhang, K. (2007): Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett. Appl. Microbiol. 45, 262–269.
Luc, M., Sikora, R. A. and Bridge, J. (2005): Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. 2nd ed., Cabi Publishing, Wallingford, U.K., pp. 1–896.
Medina, A., Probanza, A., Mañero, F. G. and Azcón, R. (2003): Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl. Soil Ecol. 22, 15–28.
Mizuki, E., Ichimatsu, T., Hwang, S. H., Park, Y., Saitoh, H., Higuchi, K. and Ohba, M. (1999): Ubiquity of Bacillus thuringiensis on phylloplanes of arboreous and herbaceous plants in Japan. J. Appl. Microbiol. 86, 979–984.
Mohammed, S., El-Saedy, M. A., Enan, M. R., Ibrahim, N. E., Ghareeb, A. and Moustafa, S. A. (2008): Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J. Cell Mol. Biol. 7, 57–66.
Oka, Y. (2010): Mechanisms of nematode suppression by organic soil amendments: a review. Appl. Soil Ecol. 44, 101–115.
Oostendorp, M. and Sikora, R. (1990): In vitro interrelationships between rhizosphere bacteria and Heterodera schachtii. Revue de Nématol. 13, 269–274.
Payne, J. M. (1992): US Patent No. 5,151,363. Washington, DC: U.S. Patent and Trademark Office.
Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W. and Kloepper, J. W. (2003): Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. 100, 4927–4932.
Sela, S., Schickler, H., Chet, I. and Spiegel Y. (1998): Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur. J. Plant Pathol. 104, 59–67.
Sharma, R. D. (1994): Bacillus thuringiensis: A biocontrol agent of Meloidogyne incognita on barley. Nematol. Bras. 18, 79–84.
Shishido, M., Petersen, D. J., Massicotte, H. B. and Chanway, C. P. (1996): Pine and spruce seedling growth and mycorrhizal infection after inoculation with plant growth promoting Pseudomonas strains. FEMS Microbiol. Ecol. 21, 109–119.
Siddiqui, Z. and Mahmood, I. (1999): Role of bacteria in the management of plant parasitic nematodes: a review. Biores. Techn. 69, 167–179.
Taylor, D. P. and Netscher, C. (1974): An improved technique for preparing perennial pattern of Meloidogyne spp. Nematol. 20, 268.
Terefe, M., Tefera, T. and Sakhuja, P. (2009): Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J. Invert. Pathol. 100, 94–99.
Townshend, J. (1962): An examination of the efficiency of the Cobb decanting and sieving method. Nematologica 8, 293–300.
Van-Loon, L. (2007): Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119, 243–254.
Van-Loon, L. and Bakker, P. A. H. M. (2007): Root-associated bacteria inducing systemic resistance. In: S. S. Gnanamanickam (ed.): Plant-Associated Bacteria. Springer, pp. 269–316.
Vilas-Bôas, G. T. and Lemos, M. V. F. (2004): Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Can. J. Microbiol. 50, 605–613.
Vilas-Bôas, L. A., Vilas-Bôas, G. F., Saridakis, H. O., Lemos, M. V. F., Lereclu, D. and Arantes, O. M. (2000): Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol. Ecol. 31, 255–259.
Vovlas, N., Rapoport, H. F., Jiménez-Díaz, R. M. and Castillo, P. (2005): Differences in feeding sites induced by root-knot nematodes, Meloidogyne spp., in chickpea. Phytopathol. 95, 368–375.
Wang, M., Yang, J. and Zhang, K. Q. (2006): Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Can. J. Microbiol. 52, 130–139.
Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C. and Aroian, R. V. (2003): Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. 100, 2760–2765.
Yap, C. A. (2013): Screening for nematicidal activities of Bacillus species against root knot nematode (Meloidogyne incognita). Am. J. Exp. Agri. 3, 794–805.
Zuckerman, B. M., Dicklow, M. B. and Acosta, N. (1993): A strain of Bacillus thuringiensis for the control of plant-parasitic nematodes. Biocontrol Sci. Techn. 3, 41–46.