Wheat and its derivatives are a main staple food for the Algerian populations. The objective of this study aims to analyze local and imported wheat grains for fungi particularly Fusarium graminearum chemotype DON and evaluate deoxynivalenol (DON) contaminated wheat collected from Bechar region, in south-western Algeria. A total of 64 of wheat samples were examined for fungal contamination and fungal load was determined by means of standard microbiological method. DON was detected using the ELISA technique. The results revealed that 98.44% of analyzed samples showed positive results regarding fungal contamination. More precisely, local wheat was dominated by Aspergillus and Penicillium and imported wheat was dominated by Fusarium, Penicillium and Aspergillus species. Results showed that 62.5% of F. graminearum strains produced DON. Contamination levels of wheat with DON ranging from <0.04 ppm to >5ppm for soft wheat and from <0.12ppm to >15ppm for durum wheat. So, 62.96% of soft wheat grains and 55.56% of durum wheat imported from France, and also 18.18% of local durum wheat exceed the permissible limit by far. This study provides basic grounds in assessing the degree of fungal and potential DON contamination in Algerian wheat.
Aiko, V. and Mehta, A. (2016): Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech. 6, 1–10.
Al-Haik, W. M., Abdullah Bawazir, A. M., Aly, M. M., Al-Haddad, A. M. and Shantaram, M. (2017): Antimicrobial activity of lactic acid bacteria against toxigenic fungi. Int. J. Curr. Res. Aca. Rev. 5, 1–8.
Aoues, K., Boutoumi, H. and Benrima, A. (2017): Phytosanitary status of local durum wheat stored in Algeria. Revue Agrobiologia. 7, 286–296.
Balzer, A., Tardieu, D., Bailly, J. D. and Guerre, P. (2004): The trichothecenes: toxins nature, natural occurrence in food and feeds, and ways of struggle. Revue Méd. Vét. 155, 299–314.
Battilani, P., Toscano, P., Van der Fels-Klerx, H. J., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A., Goumperis, T. and Robinson, T. (2016): Afltoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports. Nature 6, 24328.
Bennett, J. W. and Klich, M. (2003): Mycotoxins. Clin. Microbiol. Rev. 16, 497–516.
Berghofer, L. K., Hocking, A. D., Miskelly, D. and Jansson, E. (2003): Microbiology of wheat and flour milling in Australia. Int. J. Food Microbiol. 85,137–149.
Boutigny, A. L., Barreau, C., Atanasova-Penichon, V., Verdal-Bonnin, M. N., Pinson-Gadais, L. and Richard- Forget, F. (2009): Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycological Reserearch 13, 746–753.
Burgess, L. W., Klein, T. A., Bryden, W. L. and Tobin, N. F. (1987): Head blight of wheat caused by Fusarium graminearum Group I in New South Wales in 1983. Australasian Plant Pathology 16, 72–78.
Chehri, K., Salleh, B., Yli-Mattila, T., Soleimani, M. J. and Yousefi, A. R. (2010): Occurrence, pathogenicity and distribution of Fusarium spp. in stored wheat seeds Kermanshah Province, Iran. Pakistan J. Biological Sciences 13, 1178–1186.
Chehri, K., Maghsoudlou, E., Asemani M., and Mirzaei, M. R. (2011): Identification and pathogenicity of Fusarium species associated with head blight of wheat in Iran. Pak. J. Bot., 43, 2607–2611.
Chen, H. K., Wang, G. and Jiang, X. (1982): Studies on Fusarium species infecting spikes of wheat and barley in Zhejiang Province. Acta Phytopathologica Sinica 12, 1–12.
Chilaka, C. A., De Boevre, M., Atanda, O. O. and De Saeger, S. (2018): Quantification of Fusarium mycotoxins in Nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control 87, 203–210.
Djaaboub, S., Moussaoui, A., Meddah, B., Makhloufi, S., Gouri, S. and El Khatib, R. (2018): Antifungal activity of some indigenous lactic acid bacteria isolated from soft wheat. J. Pure and Applied Microbiology. 12, 111–118.
Ferreira-Geraldo, M. R., Tessmann, D. J. and Kemmelmeier, C. (2006): Production of mycotoxins by Fusarium graminearum isolated from small cereals (wheat, triticale and barley) affected with scab disease in southern Brazil. Brazilian J. Microbiology 37, 58–63.
Foroud, N. A. and Eudes, F. (2009): Trichothecenes in Cereal Grains. Int. J. Mol. Sci. 10, 147–173.
Franco, T. S., Garcia, S., Hirooka, E. Y., Ono, Y. S. and Dos Santos, J. S. (2011): Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J. Appl. Microbiology 111, 739–748.
Gilbert, J. and Tekauz, A. (2000): Review: recent developments in research on Fusarium head blight of wheat in Canada. Canadian J. Plant Pathology 22, 1–8.
Guimarães, A., Venancio, A. and Abrunhosa, L. (2018a): Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Additives and Contaminants: PART A, 1–16.
Guimarães, A., Santiago, A., Teixeira, J. A., Venâncio, A. and Abrunhosa, L. (2018b): Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. International J. Food Microbiology. 264, 31–38.
Hornok, L. (2007): Sexual and vegetative compatibility/incompatibility in Fusarium Species. Acta Phytopathol. et Entomol. Hung. 42, 291–296.
James, A. and Zikankuba, V. L. (2018): Mycotoxins contamination in maize alarms food safety in Sub-Sahara. Africa Food Control 90, 72–81.
Kaktcham, P. M., Zambou Ngoufack, F., Foko Kouam, E. M., Oana, C., Matei, F., Cornea, C. P. and Israel-Roming, F. (2018): Antifungal activity of lactic acid bacteria isolated from peanuts, gari, and orange fruit juice against food aflatoxigenic molds. Food Biotechnology 32, 237–256.
Khalef, A., Zidane, C., Charef, A., Gharbi, A., Tadjerouna, M., Betbeder, A. M. and Creppy, E. E. (1993): Human ochratoxicosis in Algeria. In: E. E. Creppy, M. Castegnaro, G. Dirheimer (eds.): Human Ochratoxicosis and its Pathologies. INSERM/John Libbey Eurotext, Montrouge and France, pp. 123–127.
Kim, H. S., Lee, T., Dawlatana, M., Yun, S. H., and Lee, Y. W. (2003): Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol. Res. 107, 190–197.
Klich, M. A. (2002): Biogeography of Aspergillus species in soil and litter. Mycologia. 94, 21–27.
Korn, U., Müller, T., Ulrich, A. and Herta-Müller, M. E. (2011): Impact of aggressiveness of Fusarium gramine- arum and F. culmorum isolates on yield parameters and mycotoxins production in wheat. Mycotox. Res. 27, 195–206.
Langseth, W. and Rundberget, T. (1999): The occurrence of HT-2 toxin and other trichothecenes in Norwegian cereals. Mycopathologia. 147, 157–165.
Leslie J. F. and Summerell, B. A. (2006): The Fusarium Laboratory Manual. Blackwell Professional, Ames, Iowa and USA. 368 p.
Luz, C., Saladino, F., Luciano, F. B., Manes, J. and Meca, G. (2017): In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT - Food Science and Technology. 81, 128–135.
Malachova, A., Stockova, L., Wakker, A., Varga, E., Krska, R. and Michlmayr, H. (2015): Critical evaluation of indirect methods for the determination of deoxynivalenol and its conjugated forms in cereals. Analytical and Bioanalytical Chemistry 407, 6009–6020.
Mastanjević, K., Šarkanj, B., Mastanjević, K., Šantek, B. and Krstanović, V. (2018): Fusarium culmorum mycotoxin transfer from wheat to malting and brewing products and by-products. World Mycotoxin J. 12, 55–66.
McCormick, S. P., Stanley, A. M., Stover, N. A. and Alexander, N. J. (2011): Trichothecenes: from simple to complex mycotoxins .Toxins 3, 802–814.
Miller, J. D. (2016): Mycotoxins in food and feed: A challenge for the twenty-first century. In: D.-W. Li (ed.): Biology of Microfungi, Fungal Biology. Springer International Publishing, Switzerland, pp. 469–493.
Nagaraja, H., Chennappa, G., Poorna Chandra Rao, K., Mahadev Prasad, G. and Sreenivasa, M. Y. (2016): Diversity of toxic and phytopathogenic Fusarium species occurring on cereals grown in Karnataka State, India, 3 Biotech. 6, 57.
Nelson, P. E., Plattner, R. D., Shackelford, D. D. and Desjardins, A. E. (1991): Production of fumonisins by strains of Fusarium moniliforme from various substrates and geographic areas. Appl. Environ. Microbiol. 57, 2410–2412.
Orlando, B., Grignon, G., Vitry, C., Kashefifard, K. and Valade, R. (2019): Fusarium species and enniatin mycotoxins in wheat, durum wheat, triticale and barley harvested in France. Mycotoxin Research 35, 369–380.
Pawlowska, A. M., Zannini, E., Coffey, A. and Arendt, E. K. (2012): Green preservatives: Combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advances in Food and Nutrition Research. 5, 215–236.
Pitt, J. I. and Hocking, A. D. (2009): Fungi and Food Spoilage. 3rd ed. Spinger: (Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), 519 p.
Riba, A., Mokrane, S., Mathieu, F., Lebrihi, A. and Sabaou, N. (2008): Mycoflora and ochratoxin A producing strains of Aspergillus in Algerian wheat. International J. Food Microbiology. 122, 85–92.
Riba, A., Bouras, N., Mokrane, S., Mathieu, F., Lebrihi, A. and Sabaou, N. (2010): Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products. Food and Chemical Toxicology. 48, 2772–2777.
Saladino, F., Luz, C., Manyes, L., Fernandez-Franzon, M. and Meca, G. (2016): In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control 67, 273–277.
Shephard, G. S., Westhuizen, L. V. D., Gatyeni, P. M., Katerere, D. R., and Marasas, W. F. O. (2005): Do fumonisin mycotoxins occur in wheat? J. Agric. Food. Chem. 53, 9293–9296.
Tahani, N., Serghini-Caid, H., Ouzouline, M. and Elamrani, A. (2008): Mycologia of soft wheat: technological quality of grain and consequences on final products. Reviews in Biology and Biotechnology. BioAlliance Canada-Morocco. 7, 27–32.
Tan, M. K. and Niessen, L. M. (2003): Analysis of rDNA ITS sequences to determine genetic relationships among, and provide a basis for simplified diagnosis of, Fusarium species causing crown rot and head blight of cereals Mycol. Res. 107, 811–821.
Tančić Živanov, S., Nešić, L., Jevtić, R., Belić, M., Ćirić, V., Lalošević, M. and Veselić, J. (2017): Fungal diversity as infuenced by soil characteristics. Zemdirbyste-Agriculture. 104, 305–310.
Thiel, P. G., Marasas, W. F. O., Sydenham, E. W., Sheperd, G. S., Gelderblom, W. C. A., and Niewenhuis, J. J. (1991): Survey of fumonisin production by Fusarium species. Appl Environ. Microbiol. 57, 1089–1093.
Trabelsi, R., Sellami, H., Gharbi, Y., Krid, S., Cheffi, M., Kammoun, S., Dammak, M., Mseddi, A., Gdoura, R. and Triki, M. A ( 2017): Morphological and molecular characterization of Fusarium spp. associated with olive trees dieback in Tunisia. 3 Biotech. 7, 28.
Van der Fels-Klerx, H. J., De Rijk, T. C., Booij, C. J. H., Goedhart, P. W., Boers, E. A. M., Zhao, C. and Van der Lee, T. A. J. (2012): Occurrence of Fusarium Head Blight species and Fusarium mycotoxins in winter wheat in the Netherlands in 2009. Food Addit. Contam. A. 29, 1716–1726.
Vismera, H. F., Shepharda, G. S., Van der Westhuizenb, L., Mngqawaa, P., Bushula-Njahc, V. and Leslie, J. F. (2019): Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro. International J. Food Microbiology 296, 31–36.
Weidenbörner, M., Wieczorek, C., Appel, S. and Kunz, B. (2000): Whole wheat and white wheat flour-the myc- obiota and potential mycotoxins. Food Microbiology.17, 103–107.
Xu, X. M., Parry, D. W., Nicholson, P., Thomsett, M. A., Simpson, D., Edwards, S. G., Cooke, B. M., Doohan, F. M., Brennan, J. M., Moretti, A., Tocco, G., Mule, G., Hornok, L., Giczey, G. and Tatnell, J. (2005): Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. Eur. J. Plant Pathol. 112,143–154.
Yazar, S. and Omurtag, G. Z. (2008): Fumonisins, Trichothecenes and Zearalenone in Cereals. Int. J. Mol. Sci. 9, 2062–2090.
Yli-Mattila, T., Gagkaeva, T., Ward, T. J., Aoki, T., Kistler, H. C. and O'Donnell, K. A. (2009): Novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101, 841–852.
Zhang, J. B., Li, H. P., Dang, F. J., Qu, B., Xu, Y. B., Zhao, C S. and Liao, Y. C. (2007): Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycological Research 111, 967–975.