Authors:
Deeksha Kashyap Department of Botany, Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh, 202002, India

Search for other papers by Deeksha Kashyap in
Current site
Google Scholar
PubMed
Close
and
Zaki Anwar Siddiqui Department of Botany, Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh, 202002, India

Search for other papers by Zaki Anwar Siddiqui in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5941-2566
Restricted access

Abstract

Effects of Meloidogyne incognita, Pseudomonas syringae pv. pisi and Rhizobium leguminosarum were studied on growth and biochemical parameters of pea (Pisum sativum L.) in three soil types. Plants grown in 20% fly ash attained higher plant growth, chlorophyll and carotenoid followed by loam soil and 20% sand. Inoculation of R. leguminosarum resulted in increased plant growth, nodulation, chlorophyll and carotenoid over control. Root nodulation and proline contents were high in plants grown in 20% sand and least in 20% fly ash. Inoculation of M. incognita prior to P. syringae pv. pisi resulted in a greater reduction in plant growth, nodulation, chlorophyll and carotenoid content and least where P. syringae pv. pisi was inoculated prior to M. incognita. Inoculation of pathogens increased proline contents. Galling and population of M. incognita was high in 20% sand followed by loam soil and fly ash amended soil. P. syringae pv. pisi and R. leguminosarum had adverse effect on galling and nematode population. The principal component analysis identifies interaction of pathogens and showed segregation of various treatments in the plots.

  • Ahmad, L. and Siddiqui, Z.A. (2017). Effects of Meloidogyne incognita, Alternaria dauci and Fusarium solani on carrot in different types of soil. Acta Phytopathologica. et Entomologica Hungarica, 52: 3947.

    • Search Google Scholar
    • Export Citation
  • Ali, M.A., Trabulsi, 1.Y., and Abd-Elsamea, M.E. (1981). Antagonistic interaction between Meloidogyne incognita and Rhizobium leguminosarum on cowpea. Plant Disease, 65: 432435.

    • Search Google Scholar
    • Export Citation
  • Arora, N.K., Kang, S.C., and Maheshwari, D.K. (2001). Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81: 673677.

    • Search Google Scholar
    • Export Citation
  • Back, M.A., Haydock, P.P.J., and Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soil-borne pathogens. Plant Pathology, 51: 683697.

    • Search Google Scholar
    • Export Citation
  • Bardin, S.D., Huang, H.C., Pinto, J., Amundsen, E.J., and Erickson, R.S. (2004). Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Canadian Journal of Botany, 82: 291296.

    • Search Google Scholar
    • Export Citation
  • Barker, K.R., Huising, D., and Johnston, S.A. (1972). Antagonistic interaction between Heterodera glycines and Rhizobium japonicum on soybean. Phytopathology, 62: 12011205.

    • Search Google Scholar
    • Export Citation
  • Basu, M., Pande, M., Bhadoria, P.B.S., and Mahapatra, S.C. (2009). Potential fly-ash utilization in agriculture: A global review. Progress in Natural Science, 19: 11731186.

    • Search Google Scholar
    • Export Citation
  • Bates, L.S., Waldren, R.T., and Teare, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39: 205207.

    • Search Google Scholar
    • Export Citation
  • Begon, M., Townsend, C.R., and Harper, J.L. (2006). Ecology, individuals, populations and communities, 4th ed. Blackwell Science, London, p. 759.

    • Search Google Scholar
    • Export Citation
  • Carson, K.C., Meyer, J.M., and Dilworth, M.J. (2000). Hydroxamate siderophore of root nodule bacteria. Soil Biology and Biochemistry, 32: 1121.

    • Search Google Scholar
    • Export Citation
  • Cecchini, N.M., Monteoliva, M.I., and Alvarez, M.E. (2011). Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiology, 155: 19471959.

    • Search Google Scholar
    • Export Citation
  • Chahal, P.P.K., Singh, I., and Chahal, V.P.S. (1983). Interaction between different population levels of Meloidogyne incognita and Rhizobium on green gram. Journal of Research Punjab Agricultural University, 20: 399402.

    • Search Google Scholar
    • Export Citation
  • Chahal, P.P.K., Singh, I., and Chhabra, J.K. (1985). Effect of Meloidogyne incognita and Rhizobium on growth of mungbean. Journal of Research Punjab Agricultural University, 22: 181183.

    • Search Google Scholar
    • Export Citation
  • Chandra, S., Choure, K., Dubey, R.C., and Maheshwari, D.K. (2007). Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Brazilian Journal of Microbiology, 38: 128130.

    • Search Google Scholar
    • Export Citation
  • Chopra, S.L. and Kanwar, J.S. (1982). Analytical agricultural chemistry .Kalyani, New Delhi, p. 162.

  • Deshwal, V.K., Dubey R.C., and Maheshwari, D.K. (2003a). Isolation of plant growth promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Current Science, 84: 443444.

    • Search Google Scholar
    • Export Citation
  • Deshwal, V.K., Pandey, P., Kang, S.C., and Maheshwari, D.K. (2003b). Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian Journal of Experimental Biology, 41: 11601164.

    • Search Google Scholar
    • Export Citation
  • Dhall, R.K. (2017). Pea cultivation book. Printed at PAU Printing Press, Ludhiana. Punjab, India. Bulletin No. PAU/2017/Elec/FB/. ISBN: 978-93-86267-37-5.

    • Search Google Scholar
    • Export Citation
  • Doney, D.L., Fife, J.M., and Whitney, E.D. (1970). The effects of sugarbeet nematode Heterodera schachtii on the free amino acids in resistant and susceptible Beta species. Phytopathology, 60: 17271729.

    • Search Google Scholar
    • Export Citation
  • Dubey, P. S., Pawar, K., and Trivedi, L. (1982). Effect of fly ash deposition on photosynthetic pigment and dry matter production of wheat and gram. Agro-Ecosystem, 8: 137140.

    • Search Google Scholar
    • Export Citation
  • Fabro, G., Kovacs, I., Pavet, V., Szabados, L., and Alvarez, M.E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant Microbe Interactions, 17: 343350.

    • Search Google Scholar
    • Export Citation
  • Francois, L.E. (1984). Effect of excess boron on tomato yield, fruit size and vegetable growth. Journal of American Society of Horticulture Science, 109: 322324.

    • Search Google Scholar
    • Export Citation
  • Garbeva, P., van Veen, J.A., and van Elsas, J.D. (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42: 243270.

    • Search Google Scholar
    • Export Citation
  • Gill, J.S. (1989). Nematodes associated with pulse crops. In: Proceeding of All India Nematology Workshop on Pulses and oil seed crops. Udaipur, Rajasthan, pp. 18.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L.L., and Krishnamurthy, L. (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 5(4): 355377.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, D.J. (1991). Hand book of pea diseases .University of Wisconsin, Madison Extension, Bulletin A1167, p. 35.

  • Harmankaya, M., Özcan, M.M., Kardas, S., and Ceyhan, E. (2010). Protein and mineral contents of pea (Pisum sativum L.) genotypes grown in central Anatolian region of Turkey. South – Western Journal of Horticulture Biology and Environment, 1(2): 159165.

    • Search Google Scholar
    • Export Citation
  • Hazarika, K. (2003). Interrelationship of Meloidogyne incognita and Pseudomonas solanacearum on jute and management of the disease complex caused by them. Ph.D. (Nematology) Thesis, submitted to Assam Agricultural University Johrat-13, India.

    • Search Google Scholar
    • Export Citation
  • Hussain, Z. and Bora, B.C. (2009): Interrelationship of Meloidogyne incognita and Ralstonia solanacearum complex in brinjal. Indian Journal of Nematology, 39: 4145.

    • Search Google Scholar
    • Export Citation
  • Jackson, M.L. (1958). Soil chemical analysis .Prentice hall, Englewood Cliffs, NJ, p. 498.

  • Khan, M.R. and Khan, M.W. (1996). Effect of fly ash on plant growth and yield of tomato. Environmental Pollution, 92: 105112.

  • Khan, M.R., Khan, M.W., and Singh, K. (1997). Management of root-knot disease of tomato by the application of fly ash in soil. Plant Pathology, 46: 3343.

    • Search Google Scholar
    • Export Citation
  • Khan, M. and Siddiqui, Z.A. (2017). Interactions of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexans on eggplant in sand mix and fly ash mix soils. Scientia Horticulturae, 225: 177184.

    • Search Google Scholar
    • Export Citation
  • Mackinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry, 140: 315322.

  • Malek, R.B. and Jenkins, W.R. (1964). Aspects of host-parasite relationship of nematodes and Hairy vetch. New Jersey Agricultural Experiment Station Bulletin, 813: 31.

    • Search Google Scholar
    • Export Citation
  • Mallesh, S. B., Lingraju, S., Byadgi, A. S., Hegde, Y. R., Mokashi, A. N., and Krishnaraj, P. U. (2009). Bioefficacy of rhizobacteria on root-knot/wilt disease complex in coleus and ashwganda. Karnataka Journal of Agricultural Science, 22: 11161120.

    • Search Google Scholar
    • Export Citation
  • Martín-Sanz, A., De LaVega, M.P., Murillo, J., and Caminero, C. (2013). Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse. Phytopathology, 103(7): 673681.

    • Search Google Scholar
    • Export Citation
  • Minchin, R.L. and Pate, J.S. (1973). The carbon balance of a legume and the functional economy of its root nodules. Journal of Experimental Botany, 24: 259271.

    • Search Google Scholar
    • Export Citation
  • Nelson, D.W. and Sommers, L.F. (1972). A simple digestion procedure for estimation of total nitrogen in soil and sediments. Journal of Environmental Quality, 1: 423425.

    • Search Google Scholar
    • Export Citation
  • Nesha, R. and Siddiqui, Z.A. (2013). Interactions of Pectobacterium carotovorum pv. carotovorum, Xanthomonas campestris pv. carotae, and Meloidogyne javanica on the disease complex of carrot. International Journal of Vegetable Science, 19(4): 403411.

    • Search Google Scholar
    • Export Citation
  • Ozkoc, I. and Deliveli, M.H. (2001). In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turkish Journal of Biology, 25: 435445.

    • Search Google Scholar
    • Export Citation
  • Panda, R.B. and Biswal, T. (2018). Impact of fly ash on soil properties and productivity. International Journal of Agriculture Environment and Biotechnology, 11(2): 275283.

    • Search Google Scholar
    • Export Citation
  • Parveen, G., Noreen, R., Shafique, H.A., Sultana, V., Haque, S.E., and Athar, M. (2019). Role of rhizobia in suppressing the root diseases of soybean under soil amendment. Planta daninha, 37: https://doi.org/10.1590/s0100-83582019370100038.

    • Search Google Scholar
    • Export Citation
  • Ravichandra, N.G. (2014). Horticultural Nematology. Springer, New Delhi, India, pp. 1412.

  • Reddy, P.P. (1985). Estimation of crop losses in pea due to Meloidogyne incognita. Indian Journal of Nematology, 15: 226.

  • Rubio-Cabetas, M., Minot, J., Voisin, R., and Esmenjaud, D. (2001). Interaction of root-knot nematodes (RKN) and the bacterium Agrobacterium tumefaciens in roots of Prunus cerasifera: evidence of the protective effect of the Ma RKN resistance genes against expression of crown gall symptoms. European Journal of Plant Pathology, 107: 433441.

    • Search Google Scholar
    • Export Citation
  • Rungruangmaitree, R. and Jiraungkoorskul, W. (2017). Pea, Pisum sativum, and its anticancer activity. Pharmacognosy Reviews, 11(21): 3942.

    • Search Google Scholar
    • Export Citation
  • Sarangi, P. K., Mishra, T. K., and Mishra, P. C. (1997). Soil metabolism, growth and yield of Oryza sativa L. in fly ash amended soil. Indian Journal of Environmental Science, 1: 1724.

    • Search Google Scholar
    • Export Citation
  • Schmit, J, Cousin, R., and Rousseau, M.T. (1992). Race distribution of Pseudomonas syringae pv. pisi in relation to susceptibility of cultivars of protein peas in France. In: Plancquaert, P. (Ed.), Proceeding of 1st European Conference on Grain Legumes, Angers, France, pp. 335336.

    • Search Google Scholar
    • Export Citation
  • Senthil-Kumar, M. and Mysore, K.S. (2012). Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell and Environment, 35: 13291343.

    • Search Google Scholar
    • Export Citation
  • Sharma, G.L. (1989). Estimated losses due to root-knot nematode Meloidogyne incognita and M. javanica in pea crop. International Nematology Network Newsletter, 6: 2829.

    • Search Google Scholar
    • Export Citation
  • Sharma, P.D. (2005). Microbiology. Rastogi and Company, Meerut, India, pp. 1539.

  • Siddiqui, Z.A. and Mahmood, I. (2001). Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresource Technology, 79: 4145.

    • Search Google Scholar
    • Export Citation
  • Siddiqui, Z.A., Nesha, R., Singh N., and Alam S. (2012). Interactions of plant parasitic nematodes and plant pathogenic bacteria. In: Maheshwari, D.K. (Ed.), Bacteria in Agrobiology. Plant Probiotics, Springer-Verlag Berlin Heidelberg, pp. 251267. ISBN .

    • Search Google Scholar
    • Export Citation
  • Sistani, N.R., Kaul, H.P., Desalegn, G., and Wienkoop, S. (2017). Rhizobium impacts on seed productivity, quality, and protection of Pisum sativum upon disease stress caused by Didymella pinodes: Phenotypic, Proteomic, and Metabolomic Traits. Frontiers in Plant Science, 8: 115. https://doi.org/10.3389/fpls.2017.01961.

    • Search Google Scholar
    • Export Citation
  • Sitaramaiah, K. and Pathak, K.N. (1993). Nematode bacterial disease interactions. In: Khan, M.W. (Ed.), Nematode interactions , pp. 232–250. Chapman and Hall, New York, pp. 1377.

    • Search Google Scholar
    • Export Citation
  • Slack, D.A. (1963): Introduction. Symposium of interrelationships between nematodes and other agents causing plant diseases. Phytopathology, 53: 2747.

    • Search Google Scholar
    • Export Citation
  • Sneath, P.H. and Sokal, R.R. (1973). Numerical taxonomy. The principles and practice of numerical classification, W. H. Freeman and Company, San Francisco, USA, pp. 1573.

    • Search Google Scholar
    • Export Citation
  • Southey, J.F. (1986): Laboratory methods for work with plant and soil nematodes. Ministry of Agric. Fisheries and Food, Her Majesties Stationary Office, London, pp. 1202.

    • Search Google Scholar
    • Export Citation
  • Swain, P.K., Rath, J.C., and Mishra, S.K. (1987). Interaction between Meloidogyne incognita and Pseudomonas solanacearum on brinjal. Indian Journal of Nematology, 17: 6171.

    • Search Google Scholar
    • Export Citation
  • Trudgill, D.L. and Phillips, M.S. (1997). Nematode population dynamics, threshold levels and estimation of crop losses. Plant Production and Protection Paper, Food and Agriculture Organization, 144, Rome.

    • Search Google Scholar
    • Export Citation
  • Upadhyay K.D. and Dwivedi K. (1987). Analysis of crop losses in pea and gram due to Meloidogyne incognita. International Nematology Network Newsletter, 4: 67.

    • Search Google Scholar
    • Export Citation
  • Verslues, P.E. and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, 8: e0140. Published online Nov 3. https://doi.org/10.1199/tab.0140. PMCID: PMC3244962, PMID: 22303265.

    • Search Google Scholar
    • Export Citation
  • Vovlas, N., Rapoport, H.F., Jiménez Díaz, R.M., and Castillo, P. (2005). Differences in feeding sites induced by root-knot nematodes, Meloidogyne spp., in chickpea. Phytopathology, 95: 368375.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

Jenő KONTSCHÁN Centre for Agricultural Research, Hungary

Technical Editor

Ágnes TURÓCI Centre for Agricultural Research, Hungary

Section Editor

K SALÁNKI Centre for Agricultural Research, Hungary
 

Editorial Board

Z BOZSÓ Centre for Agricultural Research, Hungary
PE CHETVERIKOV Saint-Petersburg State University, Russia
JX CUI Henan Institute of Science and Technology, China
J FODOR Centre for Agricultural Research, Hungary
Z IMREI Centre for Agricultural Research, Hungary
BM KAYDAN Çukurova University, Turkey
L KISS University of Southern Queensland, Australia
V MARKÓ Hungarian University of Agriculture and Life Sciences, Hungary
MW NEGM Ibaraki University, Japan
L PALKOVICS Széchenyi István University, Hungary
M POGÁNY Centre for Agricultural Research, Hungary
D RÉDEI National Chung Hsing University, Taiwan
A TOLSTIKOV University of Tyumen, Russia
J VUTS Rothamsted Research, UK
GQ WANG Guangxi University, China

Acta Phytopathologica et Entomologica Hungarica
P.O. Box 102
H-1525 Budapest, Hungary
Phone: (36 1) 487 7534
Fax: (36 1) 487 7555
E-mail: acta@atk.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier GEO Abstracts
  • Globals Health
  • Referativnyi Zhurnal
  • SCOPUS
  • Zoological Abstracts

 

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.188
SJR Q rank Q4

2023  
Scopus  
CiteScore 1.1
CiteScore rank Q4 (Insect Science)
SNIP 0.279
Scimago  
SJR index 0.22
SJR Q rank Q4

Acta Phytopathologica et Entomologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge Effective from 1st Feb 2025:
200 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 536 EUR / 590 USD
Print + online subscription: 626 EUR / 688 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Phytopathologica et Entomologica Hungarica
Language English
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-1249 (Print)
ISSN 1588-2691 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 41 0 0
Jan 2025 91 0 0
Feb 2025 97 0 0
Mar 2025 92 0 0
Apr 2025 33 0 0
May 2025 13 0 0
Jun 2025 0 0 0