Evaluation studies investigated the leverage effects of beta-cyclodextrin (β-CD) on the long-termed toxicity of cypermethrin 25% EC, sulfoxaflor 24% SC, acetamiprid 20% SL and chlorfenapyr 24% SC against adults of Thrips tabaci laboratory strain (Thysanoptera: Thripidae) (Lindeman, 1889) from 8 up to 40 °C. Laboratory studies showed no toxicity for β-CD alone at all tested concentrations. Concentrations of β-CD at 1.25 and 2.50 gm L−1 had potent leverage effects on the LC50s of cypermethrin within 30–35 °C and sulfuxoflor at 40 °C. β-CD at 0.5 gm L−1 had no leverage effect on tested insecticides. All the tested concentrations of β-CD decreased the toxicity of acetamiprid. Semi-field trials (≥28 °C) along 12 days declared that β-CD (equivalent to 1.25 gm L−1) increased the overall mean mortality percentages of 0.5 FRs of cypermethrin (73.08%) and sulfoxaflor (54.74%) compared to their 0.5 FRs alone of 63.70 and 44.30%, respectively in season 2020. While in season 2021, only cypermethrin at 0.5 FR + β-CD (74.45%) surpassed its 0.5FR (61.83%). Lethal times (LT50) values in semi-field trials showed a prolonged residual toxicity periods for the 0.5 FRs of cypermethrin + β-CD (8.58 days) and sulfoxaflor + β-CD (4.80 days) compared to their 0.5 FRs of 6.65 and 3.24 days, respectively in season, 2020. Furthermore, LT50 values of the 0.5 FRs of cypermethrin + β-CD (9.02 days) and sulfoxaflor + β-CD (7.34 days) exceeded their 0.5 FRs of 6.24 and 4.07 days, respectively in 2021. Thus β-CD could realize leverage efficacy and longer-termed toxicity for cypermethrin and sulfoxaflor in high temperatures.
Abbott, W.S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267.
Amiri, S. and Amiri, S. (2017). Cyclodextrins: Properties and Industrial Applications. John Wiley and Sons Ltd., Hoboken, NJ. https://doi.org/10.1002/9781119247609.
Amiri, S. and Rahimi, A. (2014). Preparation of supramolecular corrosion inhibitor nanocontainers for self-protective hybrid nanocomposite coatings. Journal of Polymeric Research, 21: 566. https://doi.org/10.1007/s10965-014-0566-5.
Amiri, S. and Rahimi, A. (2015). Anti-corrosion hybrid nano-composite coatings with encapsulated organic corrosion inhibitors. Journal of Coat Technology Research, 12: 587–593.
Arias, M.J., Mayano, J.R., and Munoz, P. (2000). Study of omeprazole-g-cyclodextrin complexation in the solid-state. Drug Development and Industrial Pharmacy, 26: 253–259.
Arima, H., Miyaji, T., and Irie, T. (2001). Enhancing effect of hydroxypropyl b-cyclodextrin on cutaneous penetration and activation of ethyl-4-biphenyl acetate in hairless mouse skin. European Journal, 6(1):53–59.
Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., and Simal-Gandara, J. (2009). A review on the use of cyclodextrins in foods. Food Hydrocolloids, 23: 1631–1640.
Betrand, S., Trunfio, G., Francois, M.J., Sophie, G., Badot, P.M., and Gregorio, C. (2011). Heavy metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity. Journal of Environmental Management, 92(3): 765–772.
Boina, D.R., Onagbola, E.O., Salyani, M., and Stelinski, L.L. (2009). Influence of post treatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). Journal of Economic Entomology, 102(2): 685–691.
Campos, E.V.R., De Oliveira, J.L., Fraceto, L.F., and Singh, B. (2015). Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 35: 47–66. https ://doi.org/10.1007/s1359 3-014-0263-0.
Dall’asta, G.C., Corradini, R., Galaverna, G., and Marchelli, R. (2003). Fluorescence enhancement of aflatoxins using native and substituted cyclodextrins. Journal of Inclusion Phenomena Macrocyclic Chemistry, 45(3–4): 257–263.
Deligeorgidis, P.N., Ipsilandis, C.G., Vaiopoulou, M., Kaltsoudas, G., and Sidiropoulos, G. (2005). Predatory effect of Coccinella Septempunctata on Thrips tabaci and Trialeurodes vaporariorum. Journal of Applied Entomology, 129(5): 246–249.
Delogu, G., Fois, X., Mannu, R., and Pantaleoni, R.A. (2019). Enhancing insecticide activity using a physical mixture with cyclodextrin: a witch’s cauldron or an opportunity? Journal of Pest Science, 92: 943–950. https://doi.org/10.1007/s10340-019-01120-w.
Etheridge, B., Gore, J., Catchot, A.L., Cook, D.R., Musser, F.R., and Larson, E.J. (2019). Influence of temperature on the efficacy of foliar insecticide sprays against sugarcane aphid (Hemiptera: Aphididae) populations in grain sorghum. Journal of Economic Entomology, 112(1): 196–200.
Finney, D.J. (1971). Probit analysis, 3rd ed. Cambridge University Press, London, pp. 1–333.
Fromming, K.H. and Szejtli, J. (1994). Cyclodextrins in pharmacy: topics in inclusion science. Kluwer Academic Publishers, Dordrecht, pp. 1–225. https://doi.org/10.1007/978-94-015-8277-3.
Gill, H.K., Garg, H., Gill, A.K., Gillett-Kaufman, J.L., and Nault, B.A. (2015). Onion thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. Journal of Integrated Pest Management, 6(1): 6. https://doi.org/10.1093/jipm/pmv006.
Giordano, F., Novak, C., and Moyano, J.R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2): 123–151.
Glunt, K.D., Oliver, S.V., Hunt, R.H., and Paaijmans, K.P. (2018). The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malaria Journal, 17: 131. https://doi.org/10.1186/s12936-018-2250-4.
Green, J.M. and Beestman, G.B. (2007). Recently patented and commercialized formulation and adjuvant technology. Crop Protection Journal, 26: 320–327. https://doi.org/10.1016/j.cropro.2005.04.018.
Gruiz, K., Molnár, M., Fenyvesi, É., Hajdu, Cs., Atkári, Á., and Barkács, K. (2011). Cyclodextrins in innovative engineering tools for risk-based environmental management. Journal of Inclusion Phenomena, 70(3): 299–306.
Gul, M. and Parlak, H. (2017). Input usage and problems in green bean production: a case of Burdur province, Turkey. AgroLife Scientific Journal, 6(1): 133–140.
Hashimoto, H. (2006). Cyclodextrin applications in food, cosmetic, toiletry, textile and wrapping material fields. In: Dodziuk, H. (Ed.), Cyclodextrins and their complexes: Chemistry, analytical methods, applications. Wiley-VCH, Weinheim, Germany, pp. 452–459.
Hansen, L.S. (1989). The effect of initial thrips density (Thrips tabaci Lind. [Thysanoptera, Thripidae]) on the control exerted by Amblyseius barkeri (Hughes) (Acarina, Phytoseiidae) on glass house cucumber. Journal of Applied Entomology, 107: 130–135.
IRAC (2009). IRAC susceptibility test method no. 010 for adults of Frankliniella occidentalis. Approved version 3. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 70: 299–306. www.irac-online.org.
Jenser, G., and Szénási, Á. (2004). Review of the biology and vector capability of Thrips tabaci Lindeman (Thysanoptera: Thripidae). Acta Phytopathologica et Entomologica Hungarica, 39(1–3): 137–155.
Jiang, H., Wu, H., Chen, J., Tian, Y., Zhang, Z., and Xu, H. (2019.) Sulfoxaflor applied via drip irrigation effectively controls cotton aphid (Aphis gossypii Glover). Insects, 10: 345.
Jin, Z.-Y. (2013). Cyclodextrin chemistry: preparation and application. Chemical Industry Press, World Scientific Publishing Co. Pte. Ltd, Singapore, pp. 1–267.
Kandil, M.A., Swelam, E.S., and Abu-Zahw, M.M. (2011). Effect of light and temperature on chlorfenapyr and identification of its main degradation products. Research Journal of Environmental Toxicology, 5(5): 316–322.
Kayaci, F., Ertas, Y., and Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electro-spun polymeric nanofibers. Journal of Agriculture Food Chemistry, 61: 8156–8165. https://doi.org/10.1021/jf402923c.
Khan, H.A.A., Akram, W., Shad, S.A., and Lee, J. (2013a). Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L. PloS One, 8(4): e60929. www.plosone.org.
Khan, H.A.A., Shad, S.A., and Akram, W. (2013b). Resistance to new chemical insecticides in the house fly, Musca domestica L., from dairies in Punjab, Pakistan. Parasitology Research, 112: 2049–2054. https://doi.org/10.1002/3527608982.
Komiyama, M. and Monflier, E. (2006). Cyclodextrin catalysis. In: Dodziuk, H. (Ed.), Cyclodextrins and their complexes: Chemistry, analytical methods, applications. Wiley-VCH, Weinheim, Germany, pp. 93–105.
Kuwayama, S. (1908). Die psylliden Japans. I. Transactions of the Sapporo Natural History Society, 2: 149–189.
Li, X-H. and Jin, Z-Y. (2013). Application of cyclodextrins in non-industrial areas. Chemical Industry Press, World Scientific Publishing Co, Pte Ltd., pp. 235–267.
Lindeman, K. (1889). Die schädlichten insekten des tabak in Bessarabien. Bulletin de la Societe imperiale des naturalistes de Moscou, 2: 10–77.
Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentilis, synonymis, locis. Systema Naturae, ed., 10(1): 1e824.
Liu, H., Cai, X., Wang, Y., and Chen, J. (2011). Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Research, 45: 3499–3511.
Loftsson, T. (2002). Cyclodextrins and the biopharmaceutical classification system of drugs. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44: 63–67.
Mansoor, M.M., Afzal, M., Raza, A.M., Akram, Z., Waqar, A., and Afzal, M.B.S. (2015). Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Saudi Journal of Biological Science, 22: 317–321.
Menges, R.A. and Armstrong, D.W. (1991). Chiral separations using native and functionalized cyclodextrin-bonded stationary phases in high-pressure liquid-chromatography. American Chemical Society (ACS) Symposium Series, American Chemical Society, 471: 67–100.
Miller, T. and Adams, M. (1982). Mode of action of pyrethroids. In: Coats, J.R. (Ed.), Insecticide mode of action. Academic Press, New York, pp. 3–27.
Mitchell, C.R. and Armstrong, D.W. (2004). Cyclodextrin-based chiral stationary phases for liquid chromatography: a twenty-year overview. In: Gübitz, G. and Schmid, M.G. (Eds.), Chiral separations methods and protocols: Methods in molecular biology, Vol. 243. Humana Press Inc, Totowa, pp. 61–112.
Morillo, E. (2006). Application of cyclodextrins in agrochemistry: cyclodextrins and their complexes . In: Dodziuk, H. (Ed.), Chemistry, analytical methods, applications. Wiley-VCH, Weinheim, Germany, p. 459.
Morin-Crini, N., Fourmentin, S., Fenyvesi, E., Lichtfouse, E., Torri, G., Fourmentin, M., and Crini, G. (2020). History of cyclodextrins. In: Crini, G., Fourmentin, S., and Lichtfouse, E. (Eds.), The history of cyclodextrins. Environmental chemistry for a sustainable world, Vol. 52. Springer, Cham, p. 52. https://doi.org/10.1007/978-3-030-49308-0_1.
Mound, L.A. and Marullo, R. (1996). The thrips of Central and South America: an introduction (Insecta: Thysanoptera). Memoirs of Entomology, 6: 487.
Murai, T. and Toda, S. (2002). Variation of Thrips tabaci in colour and size: Thrips and Tospoviruses. Proceedings of the 7th international symposium on Thysanoptera, Reggio Calabria, Australian National Insect Collection Canberra, 377–378.
Oxborough, R M., Guessan, R., Jones, R., Kitau, J., Ngufor, C., and Malone, D. (2015). The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control. Malaria Journal, 14: 124.
SAS INC (2002). PC-SAS user guide, version 8. North Carolina statistical analysis system institute, Inc.
Sedaratian, A., Fathipour, Y., Talebi, A.A., and Farahani, S. (2010). Population density and spatial distribution pattern of Thrips tabaci (Thysanoptera: Thripidae) on different soybean varieties. Journal of Agriculture Science Technology, 12: 275–288.
Shieh, W.J. and Hedges, A.R. (1996). Properties and applications of cyclodextrins. Journal of Macromolecular Science, 33(5): 673–683.
Szejtli, J. and Szente, L. (1994). Molecular encapsulation of pesticides with cyclodextrins. In: International atomic energy agency (IAEA) (Ed.), Research and development of controlled release formulations of pesticides: Development and evaluation of controlled release formulations of pesticides, Vol. 1. FAO/IAEA division of nuclear techniques in food and agriculture, Vienna, pp. 35–46.
Szente, L. and Szejtli, J. (1999). Cyclodextrins in pesticides. In: Szejtli, J. and Osa, T. (Eds.), Comprehensive supra-molecular chemistry, Cyclodextrins, Vol. 3. Pergamon, pp. 503–514.
Sliwa, W. and Girek, T. (2017). Cyclodextrins- properties and applications, Vol. 12. Wiley-VCH, Boschstr, Weinheim, Germany, p. 69469.
Szejtli, J. (2004). Past, present, and future of cyclodextrin research. Pure Applied Chemistry, 76(10): 1825–1845.
Teja, N., Sunitha, V., Babu, V. R., and Satyanarayana, J. (2018). Effect of variable temeperature on the toxicity of novel insecticides against diamondback moth, Plutella xylostella (Linn.). Journal of Entomology Studies, 6(5): 409–412.
Trdan, S., Valic, N., and Znidarcic, D. (2007). Field efficacy of deltamethrin in reducing damage caused by Thrips tabaci Lindeman (Thysanoptera: Thripidae) on early white cabbage. Journal of Pest Science, 80: 217–223.
Turan, A.C., Özen, İ., Gürakın, H.K., and Fatarella, E. (2017). Controlled release profile of imidacloprid-β-cyclodextrin inclusion complex embedded polypropylene filament yarns. Journal of Engineered Fibers and Fabrics, 12(1): 75–83. http://www.jeffjournal.org.