Authors:
Deeksha Kashyap Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh-202002, India

Search for other papers by Deeksha Kashyap in
Current site
Google Scholar
PubMed
Close
and
Zaki Anwar Siddiqui Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh-202002, India

Search for other papers by Zaki Anwar Siddiqui in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5941-2566
Restricted access

Abstract

Effects of Pseudomonas putida and zinc oxide nanoparticles (ZnO NPs) alone and in combination was observed in plants grown with bacterized seeds with Rhizobium leguminosarum for the management of Meloidogyne incognita and Pseudomonas syringae pv. pisi on pea (Pisum sativum). Inoculation of M. incognita and P. syringae pv. pisi alone and both together reduced plant growth, chlorophyll and carotenoid content over uninoculated control. Use of P. putida and ZnO NPs 0.10 ml−1 (foliar spray/seed priming) alone and in combination resulted in a significant increase in plant growth, chlorophyll, and carotenoid in pathogen-inoculated plants. Seed priming with ZnO NPs was better than NPs foliar spray in increasing plant growth, chlorophyll and carotenoid content of plants with pathogens. Use of P. putida plus NPs seed priming was better than its use with foliar spray in increasing plant growth, chlorophyll, and carotenoid. Bacterization with R. leguminosarum caused sufficient root nodulation and nodulation was better in plants with P. putida than in plants with ZnO NPs. Both test pathogens had adverse effect on root nodulation. Blight disease indices, galling, and nematode population were also greatly reduced when P. putida was used with ZnO NPs seed priming.

  • Akbar, A. and Anal, A.K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control, 38: 8895. https://doi.org/10.1016/j.foodcont.2013.09.065.

    • Search Google Scholar
    • Export Citation
  • Antoun, H. and Kloepper, J.W. (2001). Plant growth-promoting rhizobacteria (PGPR). In: Brenner, S. and Miller, J.H. (Eds.), Encyclopedia of genetics, Academic Press, New York, pp. 14771480.

    • Search Google Scholar
    • Export Citation
  • Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., and Regnier, J.M. (1998). Feeding value of pea (Pisum sativum, L.) 1: chemical composition of different categories of pea. Animal Science, 67: 609619.

    • Search Google Scholar
    • Export Citation
  • Bozbuga, R., Lilley, C.J., Knox, J.P., and Urwin, P.E. (2018). Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Scientific Reports, 8(1): 17302.

    • Search Google Scholar
    • Export Citation
  • Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F., and Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6: 866870.

    • Search Google Scholar
    • Export Citation
  • Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146: 185205.

    • Search Google Scholar
    • Export Citation
  • Da Silva, L.C., Oliva, M.A., Azevedo, A.A., and De Araujo, M.J. (2006). Response of restinga plant species to pollution from an iron pelletization factory. Water, Air & Soil Pollution, 175: 241256.

    • Search Google Scholar
    • Export Citation
  • Dutta, P. (2018). Seed priming: new vistas and contemporary perspectives. In: Rakshit, A. and Singh, H.B. (Eds.), Advances in seed priming, Springer Nature Singapore Pte Ltd., Singapore, pp. 322.

    • Search Google Scholar
    • Export Citation
  • Eisenback, J. (1986). A comparison of techniques useful for preparing nematodes for scanning electron microscopy. Journal of Nematology, 18: 479.

    • Search Google Scholar
    • Export Citation
  • Farooq, M., Basra, S.M., Rehman, H., and Mehmood, T. (2006). Germination and early seedling growth as affected by pre-sowing ethanol seed treatments in fine rice. International Journal of Agriculture and Biology, 8: 1922.

    • Search Google Scholar
    • Export Citation
  • Guo, J., Jing, X., Peng, W.L., Nie, Q., Zhai, Y., Shao, Z., Zheng, L., Cai, M., Li, G., and Zou, H. (2016). Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain MCCC 1A00316. Scientific Reports, 6: 29211. https://10.1038/srep29211.

    • Search Google Scholar
    • Export Citation
  • Gupta, S., Kushwah, T., Vishwakarma, A., and Yadav, S. (2015). Optimization of ZnO-NPs to investigate their safe application by assessing their effect on soil nematode Caenorhabditis elegans. Nanoscale Research Letters ,10: 303.

    • Search Google Scholar
    • Export Citation
  • Hernández-León, R., Rojas-Solís, D., Contreras-Pérez, M., Orozco-Mosqueda, M.C., Macías-Rodríguez, L.I., la Cruz, H.R., Valencia-Cantero, E., and Santoyo, G. (2015). Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81: 8392.

    • Search Google Scholar
    • Export Citation
  • Hou, J., Wu, Y., Li, X., Wei, B., Li, S., and Wang, X. (2018). Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193: 852860.

    • Search Google Scholar
    • Export Citation
  • Huang, Z, Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., Yao, Y., Huang, D., and Hao, B. (2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24: 41404144.

    • Search Google Scholar
    • Export Citation
  • Hussain, A., Rizwan, M., Ali, Q., and Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research International, 26(8): 75797588.

    • Search Google Scholar
    • Export Citation
  • Kashyap, D. and Siddiqui, Z.A. (2021). Effect of silicon dioxide nanoparticles and Rhizobium leguminosarum alone and in combination on the growth and bacterial blight disease complex of pea caused by Meloidogyne incognita and Pseudomonas syringae pv. pisi. Archives of Phytopathology and Plant Protection, 54 (9–10): 499515.

    • Search Google Scholar
    • Export Citation
  • Mackinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry, 140: 315322.

  • Maclachlan, S. and Zalik, S. (1963). Plastid structure, chlorophyll concentration and free amino acid composition of chlorophyll mutant barley. Canadian Journal of Botany, 41: 10531062.

    • Search Google Scholar
    • Export Citation
  • Martin-Sanz, A., De La Vega, M.P., Murillo, J., and Caminero, C. (2013). Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse. Phytopathology, 103(7): 673681. https://10.1094/PHYTO-08-12-0196-R.

    • Search Google Scholar
    • Export Citation
  • Nayana, A.R., Joseph, B.J., Jose, A., and Radhakrishnan, E.K. (2020). Nanotechnological advances with PGPR applications. Sustainable Agriculture Reviews, 41: 163180.

    • Search Google Scholar
    • Export Citation
  • Nesha, R. and Siddiqui, Z.A. (2013). Interactions of Pectobacterium carotovorum pv. carotovorum, Xanthomonas campestris pv. carotae, and Meloidogyne javanica on the disease complex of carrot. International Journal of Vegetable Science, 19(4): 403411.

    • Search Google Scholar
    • Export Citation
  • Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7): 823839. https://doi.org/10.1289/ehp.7339.

    • Search Google Scholar
    • Export Citation
  • Oelke, E.A., Oplinger, E.S., Hanson, C.V., Davis, D.W., Putnam, D.H., Fuller, E.I., and Rosen, C.J. (1991). Dry field pea. Alternative field crop manual, Purdue University, University of Wisconsin-Extension, Cooperative Extension, USA.

    • Search Google Scholar
    • Export Citation
  • Pastor, N., Masciarelli, O., Fischer, S., Luna, V., and Rovera, M. (2016). Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Current Microbiology, 73(3): 346353. https://doi.org/10.1007/s00284-016-1068-y.

    • Search Google Scholar
    • Export Citation
  • Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S., Sajanlal, P.R., and Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal Plant Nutrition, 35: 905927.

    • Search Google Scholar
    • Export Citation
  • Raffi, M., Hussain, F., Bhatti, T.M., Akhter, J.I., Hameed, A., and Hasan, M.M. (2008). Antibacterial characterization of silver nanoparticles against E. Coli ATCC-15224. Journal of Material Science & Technology, 24: 21922196.

    • Search Google Scholar
    • Export Citation
  • Ray, S. and Patel, H. (2022). Pseudomonas. In: Amaresan, N., Patel, P., and Amin, D. (Eds.), Practical handbook on agricultural microbiology .Springer Protocols Handbooks. Humana, New York NY, pp. 1413. https://doi.org/10.1007/978-1-0716-1724-3_12.

    • Search Google Scholar
    • Export Citation
  • Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q., and Shen, Q. (2016). Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiological Research, 192: 103113.

    • Search Google Scholar
    • Export Citation
  • Richardson, H.J. and Hollaway, G.J. (2011). Bacterial blight caused by Pseudomonas syringae pv. syringae shown to be an important disease of field pea in south eastern Australia. Australasian Plant Pathology ,40: 260268.

    • Search Google Scholar
    • Export Citation
  • Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., Rehman, M.Z.U., and Waris, A.A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214: 269277.

    • Search Google Scholar
    • Export Citation
  • Sharma, A., Haseeb, A., and Abuzar, S. (2006). Screening of field pea (Pisum sativum) selections for their reactions to root-knot nematode (Meloidogyne incognita). Journal of Zhejiang University Science B, 7(3): 209214.

    • Search Google Scholar
    • Export Citation
  • Sharma, P.D. (2001). Microbiology. Rastogi and Company, Meerut, India.

  • Siddiqui, Z.A., Baghel, G., and Akhtar, M.S. (2007). Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World Journal of Microbiology & Biotechnology, 23: 435441.

    • Search Google Scholar
    • Export Citation
  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., and Mohamad, D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Letters, 7(3): 219242. https://10.1007/s40820-015-0040-x.

    • Search Google Scholar
    • Export Citation
  • Sneath, P.H. and Sokal, R.R. (1973). Numerical taxonomy. The principles and practice of numerical classification, W. H. Freeman and Company, San Francisco, USA, pp. 1573.

    • Search Google Scholar
    • Export Citation
  • Tang, J.P., Zhang, Z., Jing, X., Yu, Z., Zhang, J., Shao, Z., and Li, G. (2014). Mechanism of antagonistic bacteria Pseudomonas putida 1A00316 from the South Pole soil against Meloidogyne incognita. Chinese Journal of Applied & Environmental Biology, 20(6): 10461051.

    • Search Google Scholar
    • Export Citation
  • Volpiano, C.G., Lisboa, B.B., Granada, C.E., São José, J.F.B., de Oliveira, A.M.R., Beneduzi, A., Perevalova, Y., Passaglia, L.M.P., and Vargas, L.K. (2019). Rhizobia for biological control of plant diseases. In: Kumar, V., Prasad, R., Kumar, M., and Choudhary, D.K. (Eds.), Microbiome in plant health and disease, Springer, Singapore, pp. 315336.

    • Search Google Scholar
    • Export Citation
  • Waqas, M., Korres, N.E., Khan, M.D., Nizami, A.S., Deeba, F., Ali, I., and Hussain, H. (2019). Advances in the concept and methods of seed priming. In: Hasanuzzaman, M. and Fotopoulos, V. (Eds.), Priming and pretreatment of seeds and seedlings, Springer, Singapore., pp. 1141. https://doi.org/10.1007/978-981-13-8625-1_2.

    • Search Google Scholar
    • Export Citation
  • Welch, R.M., Webb, M.J., and Loneragan, J.F. (1982). Zinc in membrane function and its role in phosphorus toxicity. In: Scaife, A. (Ed.), Proceeding of the ninth plant nutrition colloquium. Warwick. CAB International, Wallingford, UK, pp. 710715.

    • Search Google Scholar
    • Export Citation
  • Zhang, H. and Chen, G. (2009). Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol–gel method. Environmental Science Technology, 43: 29052910.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Jiang, Y., Ding, Y., Povey, M., and York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9: 479489.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

Jenő KONTSCHÁN Centre for Agricultural Research, Hungary

Technical Editor

Ágnes TURÓCI Centre for Agricultural Research, Hungary

Section Editor

K SALÁNKI Centre for Agricultural Research, Hungary
 

Editorial Board

Z BOZSÓ Centre for Agricultural Research, Hungary
PE CHETVERIKOV Saint-Petersburg State University, Russia
JX CUI Henan Institute of Science and Technology, China
J FODOR Centre for Agricultural Research, Hungary
Z IMREI Centre for Agricultural Research, Hungary
BM KAYDAN Çukurova University, Turkey
L KISS University of Southern Queensland, Australia
V MARKÓ Hungarian University of Agriculture and Life Sciences, Hungary
MW NEGM Ibaraki University, Japan
L PALKOVICS Széchenyi István University, Hungary
M POGÁNY Centre for Agricultural Research, Hungary
D RÉDEI National Chung Hsing University, Taiwan
A TOLSTIKOV University of Tyumen, Russia
J VUTS Rothamsted Research, UK
GQ WANG Guangxi University, China

Acta Phytopathologica et Entomologica Hungarica
P.O. Box 102
H-1525 Budapest, Hungary
Phone: (36 1) 487 7534
Fax: (36 1) 487 7555
E-mail: acta@atk.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Elsevier GEO Abstracts
  • Globals Health
  • Referativnyi Zhurnal
  • SCOPUS
  • Zoological Abstracts

 

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.188
SJR Q rank Q4

2023  
Scopus  
CiteScore 1.1
CiteScore rank Q4 (Insect Science)
SNIP 0.279
Scimago  
SJR index 0.22
SJR Q rank Q4

Acta Phytopathologica et Entomologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge Effective from 1st Feb 2025:
200 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 536 EUR / 590 USD
Print + online subscription: 626 EUR / 688 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Phytopathologica et Entomologica Hungarica
Language English
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-1249 (Print)
ISSN 1588-2691 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 62 0 0
Jan 2025 87 2 5
Feb 2025 103 0 0
Mar 2025 100 0 0
Apr 2025 47 0 0
May 2025 9 0 0
Jun 2025 0 0 0