Authors:
Orsolya Császár Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103, Gödöllő, Páter Károly u. 1, Hungary

Search for other papers by Orsolya Császár in
Current site
Google Scholar
PubMed
Close
,
Franciska Tóthné Bogdányi ImMuniPot Independent Research Group, H-2100, Gödöllő, Fenyvesi nagyút 24, Hungary

Search for other papers by Franciska Tóthné Bogdányi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6689-0566
,
Ferenc Tóth Hungarian Research Institute of Organic Agriculture (ÖMKi), H-1033, Budapest, Miklós tér 1, Hungary

Search for other papers by Ferenc Tóth in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4515-556X
, and
Károly Lajos Hungarian Research Institute of Organic Agriculture (ÖMKi), H-1033, Budapest, Miklós tér 1, Hungary

Search for other papers by Károly Lajos in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7236-700X
Restricted access

Abstract

Defoliation reduces photosynthetic area, negatively effecting overall plant vitality, which at the end, severely impacts seed quality and production. The economic importance of the loss in winter wheat (Triticum aestivum L.) due to larvae of the cereal leaf beetle (Oulema melanopus, CLB) generated studies investigating the significance of the flag leaf. Simultaneously, the role of other leaves remains rather undiscovered. We simulated herbivory caused by CLB larvae in a two-year study between 2017 and 2018. We removed different amounts of leaf material from two winter wheat cultivars, either from the flag leaves only, or from all leaves. The impact of artificial defoliation was measured in grain production per ear, and related to natural CLB larval herbivory. Removing all leaves simulated CLB larval herbivory more closely than the artificial defoliation of flag leaves only. Our results suggest that the relative importance of flag leaves in seed production may be lower than previously assumed. Further studies involving various cultivars are invited to enhance the knowledge on the significance of the damage done by CLB larvae.

  • Ahmadi, A. and Joudi, M. (2007). Effects of timing and defoliation intensity on growth, yield and gas exchange rate of wheat grown under well-watered and drought conditions. Pakistan Journal of Biological Sciences ,10: 37943800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, M. , Hussain, M. , Khan, M. , Ali, Z. , Zulkiffal, M. , Anwar, J. , Sabir, W. , and Zeeshan, M. (2010). Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (Triticum aestivum). International Journal of Agriculture and Biology ,12: 509515.

    • Search Google Scholar
    • Export Citation
  • Álvaro, F. , Royo, C. , García del Moral, L.F. , and Villegas, D. (2008). Grain filling and dry matter translocation responses to source-sink modifications in a historical series of durum wheat. Crop Science ,48: 15231531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Araus, J.L. and Tapia, L. (1987). Photosynthetic gas exchange characteristics of wheat flag leaf blades and sheaths during grain filling: the case of a spring crop grown under mediterranean climate conditions. Plant Physiology ,85: 667673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bijanzadeh, E. and Emam, Y. (2010). Effect of defoliation and drought stress on yield components and chlorophyll content of wheat. Pakistan Journal of Biological Sciences, 13(14): 699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buntin, G.D. (1994). Simulated insect defoliation of seedlings and productivity of winter small-grain crops. Journal of Entomological Science, 29(4): 534542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buntin, G.D. , Flanders, K.L. , Slaughter, R.W. , and DeLamar, Z.D. (2004). Damage loss assessment and control of the cereal leaf beetle (Coleoptera: Chrysomelidae) in winter wheat. Journal of Economic Entomology, 97: 374382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswal, A.K. and Kohli, A. (2013). Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Molecular Breeding ,31: 749766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casagrande, R.A. , Ruesink, W.G. , and Haynes, D.L. (1977). The behavior and survival of adult cereal leaf beetles. Annals of the Entomological Society of America, 70(1): 1930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Császár, O. , Tóth, F. , and Lajos, K. (2021). Estimation of the expected maximal defoliation and yield loss caused by cereal leaf beetle (Oulema melanopus L.) larvae in winter wheat (Triticum aestivum L.). Crop Protection, 145: 105644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Földi, M. , Bencze, S. , Hertelendy, P. , Veszter, S. , Kovács, T. , and Drexler, D. (2021). Farmer involvement in agro-ecological research: organic on-farm wheat variety trials in Hungary and the Slovakian upland. Organic Agriculture. https://doi.org/10.1007/s13165-020-00335-x.

    • Search Google Scholar
    • Export Citation
  • Füzi, I. and Kövics, G. (2002). A gombás betegségek és a terjedésüket szimuláló mesterséges levéleltávolítás hatása az őszi búza terméshozamára. [The impact of fungal diseases and their simulation by artificial defoliation on winter wheat yield, in Hungarian]. Növényvédelem ,38: 194198.

    • Search Google Scholar
    • Export Citation
  • Gavloski, J.E. and Lamb, R.J. (2000). Compensation for herbivory in cruciferous plants: specific responses to three defoliating insects. Environmental Entomology ,29: 12581267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartig, F. (2020). DHARMa: residual diagnostics for hierarchical (Multi-level/Mixed) regression models. R package version 0.3.3.0. Retrieved from https://CRAN.R-project.org/package=DHARMa.

    • Search Google Scholar
    • Export Citation
  • Haynes, D.L. and Gage, S.H. (1981). The cereal leaf beetle in North America. Annual Review of Entomology ,26: 259287.

  • Herbert, D.A.,Jr. , Van Duyn, J.W. , Bryan, M.D. , and Karren, J.B. (2007). Cereal leaf beetle. In: Buntin, G.D. , Pike, K.S. , Weiss, M.J. , and Webster, J.A. (Eds.), Handbook of small grain insects. Entomological Society of America, Lanham, MD, USA, p. 120.

    • Search Google Scholar
    • Export Citation
  • Iqbal, N. , Masood, A. , and Khan, N.A. (2012). Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica ,50: 161170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jossi, W. and Bigler, F. (1996). Getreidehähnchen: ertragsverluste bei Winterweizen. Agrarforschung, 3(3): 120123.

  • Kassambara, A. (2020). ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr.

    • Search Google Scholar
    • Export Citation
  • Keszthelyi, S. , Pál-Fám, F. , and Pozsgai, J. (2009). Reactions of the different breeding season corns as a function of injury of cotton bollworm (Helicoverpa armigera Hbn.). Cereal Research Communications, 37(2): 321326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lajos, K. , Császár, O. , Sárospataki, M. , Samu, F. , and Tóth, F. (2020). Linear woody landscape elements may help to mitigate leaf surface loss caused by the cereal leaf beetle. Landscape Ecology, 35: 22252238. https://doi.org/10.1007/s10980-020-01097-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macedo, T.B. , Peterson, R.K.D , Dausz, C.L. , and Weaver, D.K. (2007). Photosynthetic responses of wheat, Triticum aestivum L., to defoliation patterns on individual leaves. Environmental Entomology, 36: 602608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macedo, T.B. , Peterson, R.K.D. , and Weaver, D.K. (2006). Photosynthetic responses of wheat, Triticum aestivum L., plants to simulated insect defoliation during vegetative growth and at grain fill. Environmental Entomology, 35: 17021709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazurkiewicz, A. , Jakubowska, M. , Tumialis, D. , Bocianowski, J. , and Roik, K. (2021). Foliar application of entomopathogenic nematodes against cereal leaf beetle Oulema melanopus L. (Coleoptera: Chrysomelidae) on wheat. Agronomy, 11: 1662. https://doi.org/10.3390/agronomy11081662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OMSZ – Országos Meteorológiai Szolgálat . [Hungarian Meteorological Service] Database. https://www.met.hu/idojaras/aktualis_idojaras/napijelentes_2005-2019/ (Accessed: 22 November 2020).

  • Ovaska, J. , Walls, M. , and Mutikainen, P.I.A. (1992). Changes in leaf gas exchange properties of cloned Betula pendula saplings after partial defoliation. Journal of Experimental Botany ,43: 13011307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedigo, L.P. , Hutchins, S.H. , and Higley, L.G. (1986). Economic injury levels in theory and practice. Annual Review of Entomology ,31: 341368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philips, C.R. , Herbert, D.A. , Kuhar, T.P. , Reisig, D.D. , and Roberts, E.A. (2012). Using degree-days to predict cereal leaf beetle (Coleoptera: Chrysomelidae) egg and larval population peaks. Environmental entomology, 41(4): 761767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team . (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • Shao, L. , Zhang, X. , Hideki, A. , Tsuji, W. , and Chen, S. (2010). Effects of defoliation on grain yield and water use of winter wheat. The Journal Agricultural Science, 148: 191204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simkin, A.J. , Faralli, M. , Ramamoorthy, S. , and Lawson, T. (2020). Photosynthesis in non-foliar tissues: implications for yield. The Plant Journal, 101: 10011015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinger, T. , Klötzli, F. , and Ramseier, H. (2020). Experimental assessment of the economic injury level of the cereal leaf beetle (Coleoptera: Chrysomelidae) in winter wheat. Journal of Economic Entomology ,113(4): 18231830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strategie Grains . (2018). EU grain report No.312, tallage SAS, 13/12/18, 4–5.

  • Vicente, R. , Vergara-Dıaz, O. , Medina, S. , Chairi, F. , Kefauver, S.C. , Bort, J. , Serret, M.D. , Aparicio, N. , and Araus, J.L. (2018). Durum wheat ears perform better than the flag leaves under water stress: gene expression and physiological evidence. Environmental and Experimental Botany, 153: 271285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Use R!, 2nd ed. Springer International Publishing, New York.

  • Webster, J.A. , Smith, D.H.,Jr. , and Hoxie, R.P. (1982). Effect of cereal leaf beetle on the yields of resistant and susceptible winter wheat. Crop Sciences, 22: 836840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Würschum, T. , Leiser, W.L. , Langer, S.M. , Tucker, M.R. , and Miedaner, T. (2020). Genetic architecture of cereal leaf beetle resistance in wheat. Plants, 9: 1117. https://doi.org/10.3390/plants9091117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zadoks, J.C. , Chang, T.T. , and Konzak, C.F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6): 415421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z. , Powell, J.J. , Ye, X. , Liu, X. , Yuan, Z. , and Liu, C. (2021). Overcompensation can be an ideal breeding target. Agronomy, 11: 1376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, G.X. , Midmore, D.J. , Radford, B.J. , and Yule, D.F. (2004). Effect of timing of defoliation on wheat (Triticum aestivum) in central Queensland 1. Crop response and yield. Field Crops Research, 88(2–3): 211226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, G.X. , Midmore, D.J. , Yule, D.F. , and Radford, B.J. (2006). Effect of timing of defoliation on wheat (Triticum aestivum) in central Queensland: 2. N uptake and relative N use efficiency. Field Crops Research, 96(1): 160167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
Submit Your Manuscript
 
The author instruction is available in PDF.
Please, download the file from HERE.

Editor-in-Chief

Technical Editor

  • Ágnes TURÓCI Centre for Agricultural Research, Hungary

Section Editor

  • K SALÁNKI Centre for Agricultural Research, Hungary

Editorial Board

Acta Phytopathologica et Entomologica Hungarica
P.O. Box 102
H-1525 Budapest, Hungary
Phone: (36 1) 487 7534
Fax: (36 1) 487 7555
E-mail: acta@atk.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Elsevier GEO Abstracts
  • Globals Health
  • Referativnyi Zhurnal
  • SCOPUS
  • Zoological Abstracts

 

 

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
21
Scimago
Journal Rank
0,29
Scimago Quartile Score Insect Science (Q3)
Plant Science (Q3)
Scopus  
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
Insect Science 107/172 (Q3)
Plant Science 316/482 (Q3)
Scopus
SNIP
0,481

2020  
Scimago
H-index
20
Scimago
Journal Rank
0,185
Scimago
Quartile Score
Insect Science Q4
Plant Science Q4
Scopus
Cite Score
75/98=0,8
Scopus
Cite Score Rank
Insect Science 129/153 (Q4)
Plant Science 353/445 (Q4)
Scopus
SNIP
0,438
Scopus
Cites
313
Scopus
Documents
20
Days from submission to acceptance 64
Days from acceptance to publication 209
Acceptance
Rate
48%

 

2019  
Scimago
H-index
19
Scimago
Journal Rank
0,177
Scimago
Quartile Score
Insect Science Q4
Plant Science Q4
Scopus
Cite Score
66/103=0,6
Scopus
Cite Score Rank
Insect Science 125/142 (Q4)
Plant Science 344/431 (Q4)
Scopus
SNIP
0,240
Scopus
Cites
212
Scopus
Documents
24
Acceptance
Rate
35%

 

Acta Phytopathologica et Entomologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 460 EUR / 576 USD
Print + online subscription: 536 EUR / 670 USD
Subscription fee 2023 Online subsscription: 472 EUR / 576 USD
Print + online subscription: 552 EUR / 670 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Phytopathologica et Entomologica Hungarica
Language English
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0238-1249 (Print)
ISSN 1588-2691 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2022 0 0 0
Jul 2022 0 0 0
Aug 2022 0 0 0
Sep 2022 0 0 0
Oct 2022 86 11 11
Nov 2022 39 3 3
Dec 2022 0 0 0