View More View Less
  • 1 Fodor József National Centre of Public Health, National Institute of Food-Hygiene and Nutrition H-1097 Budapest, Gyáli út 3/a. Hungary
  • | 2 National Institute of Food Hygiene and Nutrition Please ask the editor of the journal.
  • | 3 National Institute of Food Hygiene and Nutrition Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The chlorogenic acid and the total polyphenol content were analysed in two different potato varieties (Kennebec, Agria) grown under five different nitrogen fertiliser rates (0, 75, 150, 225, 300 kg ha-1). Chlorogenic acid content ranged between 6.0-22.3 mg kg-1 fresh weight and was not influenced by fertiliser levels. The chlorogenic acid in potato tubers accounted for almost 90% of the total polyphenols. Free radical scavenging and antioxidant activities of the tubers were also analysed. Ethanolic extracts if the tubers showed marked hydrogen-donating activity in the experiment using 1,1-diphenyl-2-picrylhydrazyl (DPPH), they had reducing power as measured by the Fe(III)?Fe(II) reaction, but did not exhibit H2O2 scavenging activity assessed with a chemiluminescence method. Potato extracts showed significant, although weak Cu(II)-chelating activity and inhibited the autoxidation of linolenic acid as measured by the thiocyanate method. Chlorogenic acid containing extract of potato, can act as primary and secondary antioxidant in prevention of oxidative stress. The strong correlation between the antioxidant activity and the level of total pholyphenols suggests that the phenolic compounds are important antioxidant components of whole potato tubers. Variety had minimal, while nitrogen fertiliser rate had no effects on the levels of the studied characteristics.

  • Dao, L. & Friedman, M. (1992): Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. J. agric. Fd Chem., 40, 2152-2156.

    'Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. ' () 40 J. agric. Fd Chem. : 2152 -2156.

    • Search Google Scholar
  • Pratt, D. E. & Watts, B. M. (1964): The antioxidant activity of vegetable extracts. I. Flavone aglycones. J. Fd Sci., 29, 27-33.

    'The antioxidant activity of vegetable extracts. I. Flavone aglycones. ' () 29 J. Fd Sci. : 27 -33.

    • Search Google Scholar
  • Hughes, J. C., Ayers, J. E. & Swain, T. (1962): After cooking blackening in potatoes. J. Sci. Fd Agric, 13, 224-236.

    'After cooking blackening in potatoes. ' () 13 J. Sci. Fd Agric : 224 -236.

  • Jones, D. P., Coates, R. J., Flagg, E. W., Eley, J. W., Block, G., Greenberg, R. S., Gunter, E. W. & Jackson, B. (1992): Glutathione in foods listed in the National Cancer Intitute's health habits and history food frequency questionnaire. Nutr. Cancer, 17, 57-75.

    'Glutathione in foods listed in the National Cancer Intitute's health habits and history food frequency questionnaire. ' () 17 Nutr. Cancer : 57 -75.

    • Search Google Scholar
  • Kandaswami, C. & Middleton, E. (1997): Flavonoids as antioxidants.-in: Shahidi, F. (Ed) Natural antioxidants. Chemistry, health effect and applications. A.O.C.S. Press, Champaign, IL, pp. 174-204.

    Natural antioxidants. Chemistry, health effect and applications , () 174 -204.

  • Karim, M. S., Percival, G. C. & Dixon, G. R. (1977): Comparative composition of aerial and subterranean potato tubers (Solanum tuberosum L.) J. Sci. Fd Agric, 75, 251-257.

    'Comparative composition of aerial and subterranean potato tubers (Solanum tuberosum L.) ' () 75 J. Sci. Fd Agric : 251 -257.

    • Search Google Scholar
  • Kitada, M., Igarashi, K., Hirose, S. & Kitagawa, H. (1979): Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. Biochem. Biophys. Res. Commun., 87, 388-394.

    'Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. ' () 87 Biochem. Biophys. Res. Commun. : 388 -394.

    • Search Google Scholar
  • Lazarov, K. & Werman, M. J. (1996) : Hypocholesterolaemic effect of potato peel as a dietary fiber source. Med. Sci. Res., 24, 581-582.

    'Hypocholesterolaemic effect of potato peel as a dietary fiber source. ' () 24 Med. Sci. Res. : 581 -582.

    • Search Google Scholar
  • Martens, M. & Baardseth, P. (1987): Sensory quality. in: Weichman, J. (Ed) Postharvest physiology of vegetables. Dekker, New York, pp. 427-154.

    Postharvest physiology of vegetables , () 427 -154.

  • Mitsuda, H., Yasumoto, K. & Iwami, K. (1966): Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyoto Shokuryo, 19, 273-300.

    'Antioxidative action of indole compounds during the autoxidation of linoleic acid. ' () 19 Eiyoto Shokuryo : 273 -300.

    • Search Google Scholar
  • Molnar-Perl, I. & Friedman, M. (1990): Inhibition of food browning by sulphur amino acids. 3. Apples and potatoes. J. agric. Fd Chem., 38, 1652-1656.

    'Inhibition of food browning by sulphur amino acids. 3. Apples and potatoes. ' () 38 J. agric. Fd Chem. : 1652 -1656.

    • Search Google Scholar
  • Mondy, N. I. & Gosselin, B. (1988): Effect of peeling on total phenols, total glycoalkaloids, discoloration and flavour of cooked potatoes. J. Fd Set., 53, 756-759.

    'Effect of peeling on total phenols, total glycoalkaloids, discoloration and flavour of cooked potatoes. ' () 53 J. Fd Set. : 756 -759.

    • Search Google Scholar
  • Onyeneho, S. N. & Hetttarachchy, N. S. (1993): Antioxidant activity, fatty acids and phenolic acids composition of potato peels. J. Sci. Fd Agric, 62, 345-350.

    'Antioxidant activity, fatty acids and phenolic acids composition of potato peels. ' () 62 J. Sci. Fd Agric : 345 -350.

    • Search Google Scholar
  • Oyaizu, M. (1986): Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr., 44, 307-315.

    'Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. ' () 44 Jpn. J. Nutr. : 307 -315.

    • Search Google Scholar
  • Pratt, D. E. (1972): Water soluble antioxidant activity in soybeans. J. Fd Sci., 37, 322-323.

    'Water soluble antioxidant activity in soybeans. ' () 37 J. Fd Sci. : 322 -323.

  • Pratt, D. E. (1993): Antioxidants indigenous to foods. Toxicol. Ind. Health, 9, 63-75.

    'Antioxidants indigenous to foods. ' () 9 Toxicol. Ind. Health : 63 -75.

  • Rodriguez De Sotillo, D., Hadley, M. & Holm, E. T. (1994a): Phenols in aqueous potato peel extract: extraction, identification and degradation. J. Fd Sci., 59, 649-651.

    'Phenols in aqueous potato peel extract: extraction, identification and degradation. ' () 59 J. Fd Sci. : 649 -651.

    • Search Google Scholar
  • Rodriguez De Sotillo, D., Hadley, M. & Holm, E. T. (1994b): Potato peel waste: stability and antioxidant activity of a freeze dried extract. J. Fd Sci., 59, 1031-1033.

    'Potato peel waste: stability and antioxidant activity of a freeze dried extract. ' () 59 J. Fd Sci. : 1031 -1033.

    • Search Google Scholar
  • Shimada, K., Fujikawa, K., Yahara, K. & Nakamura, T. (1992): Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. agric. Fd Chem., 40, 945-948.

    'Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. ' () 40 J. agric. Fd Chem. : 945 -948.

    • Search Google Scholar
  • Sinden, S. L., Sanford, L. L., Cantelo, W. W. & Deahl, K. L. (1988): Bioassays of segregating plant. A strategy for studying chemical defenses. J. Chem. Ecol., 14, 1941-1950.

    'Bioassays of segregating plant. A strategy for studying chemical defenses. ' () 14 J. Chem. Ecol. : 1941 -1950.

    • Search Google Scholar
  • Stevens, K. L., Wilson, R. E. & Friedman, M. (1995): Inactivation of a tetrachloroimide mutagen from simulated processing water. J. agric. Fd Chem., 43, 2424-2427.

    'Inactivation of a tetrachloroimide mutagen from simulated processing water. ' () 43 J. agric. Fd Chem. : 2424 -2427.

    • Search Google Scholar
  • Thomas, P. & Joshi, M. R. (1977): Prevention of after-cooking darkening of irradiated potatoes. Potato Res., 20, 77-84.

    'Prevention of after-cooking darkening of irradiated potatoes. ' () 20 Potato Res. : 77 -84.

    • Search Google Scholar
  • Tsuchiya, T., Suzuki, O. & Igarashi, K. (1996): Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci. Biotech. Biochem., 60, 765-768.

    'Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. ' () 60 Biosci. Biotech. Biochem. : 765 -768.

    • Search Google Scholar
  • Vinson, J. A., Jan, J., Dabbagh, Y. A., Serry, M. M. & Cai, S. (1995): Plant polyphenols exhibit lipoprotein-bound antioxidant activity using an in vitro oxidation model for heart disease. J. agric. Fd Chem., 43, 2798-2799.

    'Plant polyphenols exhibit lipoprotein-bound antioxidant activity using an in vitro oxidation model for heart disease. ' () 43 J. agric. Fd Chem. : 2798 -2799.

    • Search Google Scholar
  • A.O.A.C. (1990): Official Methods of Analysis. 15th ed. Arlington USA 952.03/A-C.

  • Al-Saikhan, M. S., Howard, L. R. & Miller, J. C. (1995): Antioxidant activity and total phenolics in different genotypes of potato (Solarium tuberosum L.). J. Fd Sci., 60, 341-343.

    'Antioxidant activity and total phenolics in different genotypes of potato (Solarium tuberosum L.). ' () 60 J. Fd Sci. : 341 -343.

    • Search Google Scholar
  • Blázovics, A., Fehér, E. & Fehér, J. (1992): Role of free radical reactions in experimental hyperlipidemia in the patomechanism of fatty liver.-in: Csomós, G. & Fehér, J. (Eds), Free radicals and liver. Springer-Verlag, Berlin, pp. 96-123.

    Free radicals and liver , () 96 -123.

  • Blois, M. S. (1958): Antioxidant determination by the use of a stable free radical. Nature, 4617, 1198-1200.

    'Antioxidant determination by the use of a stable free radical. ' () 4617 Nature : 1198 -1200.

    • Search Google Scholar
  • Byers, T. & Perry, G. (1992): Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Ann. Rev. Nutr., 12, 139-159.

    'Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. ' () 12 Ann. Rev. Nutr. : 139 -159.

    • Search Google Scholar
  • Felice, L. J., King, W. P. & Kissinger, P. T. (1976): A new liquid chromatography approach to plant phenolics. Application to the determination of chlorogenic acid in sunflower meal. J. agric. Fd Chem., 24, 380-382.

    'A new liquid chromatography approach to plant phenolics. Application to the determination of chlorogenic acid in sunflower meal. ' () 24 J. agric. Fd Chem. : 380 -382.

    • Search Google Scholar
  • Friedman, M., Dao, L. & Gumbmann, M. R. (1989): Ergot alkaloid and chlorogenic acid content in different varieties of morning glory (Ipomoea spp.) seeds. J. agric. Fd Chem., 37, 708-712.

    'Ergot alkaloid and chlorogenic acid content in different varieties of morning glory (Ipomoea spp.) seeds. ' () 37 J. agric. Fd Chem. : 708 -712.

    • Search Google Scholar
  • Friedman, M. (1992): Dietary impact of food processing. Ann. Rev. Nutr., 12, 119-137.

    'Dietary impact of food processing. ' () 12 Ann. Rev. Nutr. : 119 -137.

  • Friedman, M. (1996): Food browning and its prevention: an overview. J. agric. Fd Chem., 44, 631-653.

    'Food browning and its prevention: an overview. ' () 44 J. agric. Fd Chem. : 631 -653.

  • Friedman, M. (1997): Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J. agric. Fd Chem., 45, 1523-1540.

    'Chemistry, biochemistry, and dietary role of potato polyphenols. A review. ' () 45 J. agric. Fd Chem. : 1523 -1540.

    • Search Google Scholar
  • György, J., Antus, S., Blázovics, A. & Földiák, G. (1992): Substituents effects in the free radical reactions of sylibinin radiation induced oxidation of the flavonoid at neutral pH. Int. J. Radiat. Biol., 61, 603-609.

    'Substituents effects in the free radical reactions of sylibinin radiation induced oxidation of the flavonoid at neutral pH. ' () 61 Int. J. Radiat. Biol. : 603 -609.

    • Search Google Scholar
  • Halliwell, B. & Gutteridge, M. C. (1984): Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219, 1-14.

    'Oxygen toxicity, oxygen radicals, transition metals and disease. ' () 219 Biochem. J. : 1 -14.

    • Search Google Scholar
  • Hatano, T., Kagawa, H., Yasuhara, T. & Okuda, T. (1988): Two new flavonoids and other constituents in licoryce root: their relative astringency and radical scavenging effects. Chem. pharm. Bull., 36, 2090-2097.

    'Two new flavonoids and other constituents in licoryce root: their relative astringency and radical scavenging effects. ' () 36 Chem. pharm. Bull. : 2090 -2097.

    • Search Google Scholar
  • Heide, L. & Bögl. W. (1986): The identification of irradiated dried food-stuffs by luminescence measurements. Fd Lab. Newslett, 5, 21-23.

    'The identification of irradiated dried food-stuffs by luminescence measurements. ' () 5 Fd Lab. Newslett : 21 -23.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 9 0 0
Jul 2021 6 0 0
Aug 2021 6 0 0
Sep 2021 1 0 0
Oct 2021 7 0 0
Nov 2021 11 0 0
Dec 2021 0 0 0