View More View Less
  • 1 Institute of Food Processing and Quality Assurance, Centre of Agricultural Sciences, University of Debrecen, Faculty of Agronomy Debrecen, Hungary
  • | 2 a II. Department of Surgery, Semmelweis University Please ask the editor of the journal.
  • | 3 Fodor József National Centre of Public Health, National Institute of Food-Hygiene and Nutrition H-1097 Budapest, Gyáli út 3/a. Hungary
  • | 4 a II. Department of Surgery, Semmelweis University Please ask the editor of the journal.
  • | 5 Department of Biochemistry and Food Technology, Budapest University of Technology and Economics H-1111 Budapest, Műegyetem rkp. 3. Hungary
  • | 6 a II. Department of Surgery, Semmelweis University Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

An experimental surgical model was developed in rats after a short term alimentary induced hyperlipidemy to study the direct effect of bile on the colonic mucosa, with regard to the cancerogenic properties of lipid rich diet. The purpose of this study was to light on the role of fatty acid alteration and lipid peroxidation processes of bile in the epithelial cell damage. Animals were fed with normal (group A) and fat rich diet (group B) for 10 days and then bile samples were collected by the cannulation of the common bile duct in deep anaesthesia. The circulation preserved colons of control rats were treated either with bile from the control or hyperlipidemic rats. The treatment was carried out for 30 minutes. The electronmicroscopic alterations of epithelial cells (both enterocytes and goblet cells) caused by bile from hyperlipidemic rats were significantly greater than that of controls. Unfavourable changes of the redox state of the colonic mucosa were also detected both in the hyperlipidemic and bile treated groups. A significant increase was observed in the free-SH concentration of the two bile treated groups against the untreated animals. The changes could be explained among others by the modified bile fatty acid composition. The present study supports that the alimentary modified bile can influence the structure of the epithelium of colonic mucosa and it can be one of the inducing factor of carcinogenesis.

  • Abdel-Rahman, M., Blazovics, A., Ágoston, M., Asztalos, I., Prechl, J., Vallent, K. & Fehér, J.(1995): A chemiluminescent study for detection of free radicals in gallbladder bile in gallstone diseases. Ces. A Slov. Gastroent., 45 (1), 7-13.

    'A chemiluminescent study for detection of free radicals in gallbladder bile in gallstone diseases ' () 45 Ces. A Slov. Gastroent. : 7 -13.

    • Search Google Scholar
  • Alexander, L. R. & Justice, J. B. (1985): Fatty acid composition of human erythrocyte membranes by capillary gas chromatography-mass spectrometry. J. Chromatogr., 342, 1-12.

    'Fatty acid composition of human erythrocyte membranes by capillary gas chromatography-mass spectrometry. ' () 342 J. Chromatogr. : 1 -12.

    • Search Google Scholar
  • Baijal, P. K., Fitzpatrick, D. W. & Bird, R. P. (1998a): Comparative effects of secondary bile acids, deoxycholic and lithocholic acids, on aberrant crypt foci growth in the postiniation phases of colon carcinogenesis. Nutr. Canc., 31(2), 81-9.

    'Comparative effects of secondary bile acids, deoxycholic and lithocholic acids, on aberrant crypt foci growth in the postiniation phases of colon carcinogenesis. ' () 31 Nutr. Canc. : 81 -9.

    • Search Google Scholar
  • Baijal, P. K., Fitzpatrick, D. W. & Bird, R. P. (1998b): Modulation of colonic xenobiotic metabolizing enzymes by feeding bile acids: comparative effects of cholic, deoxycholic, lithocholic and ursodeoxycholic acids. Fd & Chem. Toxicol., 36(7), 601-7.

    'Modulation of colonic xenobiotic metabolizing enzymes by feeding bile acids: comparative effects of cholic, deoxycholic, lithocholic and ursodeoxycholic acids. ' () 36 Fd & Chem. Toxicol. : 601 -7.

    • Search Google Scholar
  • Blázovics, A., Fehér, E., Abdel-Rahman, M., Prechl, J., Ágoston, M., Fehér, J. (1996): Free radicals in connection of bile and liver. Ces. A Slov. Gastroent., 50(3), 73-78.

    'Free radicals in connection of bile and liver ' () 50 Ces. A Slov. Gastroent. : 73 -78.

  • Blois, M. S. (1958): Antioxidant determination by the use of a stable free radical. Nature, 4617, 1198-1200.

    'Antioxidant determination by the use of a stable free radical. ' () 4617 Nature : 1198 -1200.

    • Search Google Scholar
  • Bouchard, G., Chevalier, S., Perea, A., Barriault, C., Yousef, I. M. & Tuchweber, B. (1998): Role of glutathione in beneficial effect of dietary restriction on bile formation in young, mature, and old rats. J. Geront. Series A, Biol. Sci. Med. Sci., 53(5), B340-6.

    'Role of glutathione in beneficial effect of dietary restriction on bile formation in young, mature, and old rats ' () 53 J. Geront. Series A, Biol. Sci. Med. Sci. : B340 -6.

    • Search Google Scholar
  • Fehér, E., Blæzovics, A., Horváth, É. M., Kéry, Á., Petri, G., Fehér, J. (1993): Effect of Sempervivum tectorum extract in the experimental hyperlipidemia and alcoholism. A histological study in the liver and jejunum, -in: Role of free radicals in biological systems. Fehér, J., Blázovics, Á., Matkovics, B., Mézes, M. (Eds), Akadémiai Kiadó, Budapest, pp. 45-47.

    Role of free radicals in biological systems , () 45 -47.

  • Hatano, T., Kagawa, H., Yasuhara, T. & Okuda, T. (1988): Two new flavonoids and other constituents in cichore root: their relative astringency and radical scavenging effects. Chem. pharm. Bull., 36, 2090-2097.

    'Two new flavonoids and other constituents in cichore root: their relative astringency and radical scavenging effects. ' () 36 Chem. pharm. Bull. : 2090 -2097.

    • Search Google Scholar
  • Ling, S. C., Weaver, L. T. (1997): The fate of fat in the infant's colon. QJM, 90, 553-5.

    'The fate of fat in the infant's colon. ' () 90 QJM : 553 -5.

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, B. J. (1951): Protein measurement with the Folin-phenol reagent. J. biol. Chem., 193, 265-275.

    'Protein measurement with the Folin-phenol reagent. ' () 193 J. biol. Chem. : 265 -275.

  • Oyaizu, M. (1986): Studies on products of browning reaction prepared from glucosamine. Jpn. J. Nutr., 44, 307-15.

    'Studies on products of browning reaction prepared from glucosamine. ' () 44 Jpn. J. Nutr. : 307 -15.

    • Search Google Scholar
  • Peiffer, L. P., Peters, D. S. & McGarrity, T. J. (1997): Differential effects of deoxycholic acid on proliferation of neoplastic and differentiated colonocytes in vitro. Dig. Dis. Sci., 42, 2234-2240.

    'Differential effects of deoxycholic acid on proliferation of neoplastic and differentiated colonocytes in vitro. ' () 42 Dig. Dis. Sci. : 2234 -2240.

    • Search Google Scholar
  • Casellas, F., Mourelle, M., Papo, M., Guarner, F., Antolin, M., Armengol, J. R. & Malagelada, J. R. (1996): Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.Gut, 38(5), 719-23.

    'Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans ' () 38 Gut : 719 -23.

    • Search Google Scholar
  • Eder, I. M., Miquel, J. F., Jüngst, D., Paumgartner, G., Von Ritter, C. (1996): Reactive oxygen metabolites promote cholesterol crystal formation in model bile: role of lipid peroxidation. Free Rad. Biol. Med., 20, 743-749.

    'Reactive oxygen metabolites promote cholesterol crystal formation in model bile: role of lipid peroxidation. ' () 20 Free Rad. Biol. Med. : 743 -749.

    • Search Google Scholar
  • Ellmann, G. L. (1959): Tissue sulfhydril group. Arch, Biochem. Biophys., 82, 70-76.

    'Tissue sulfhydril group. ' () 82 Arch, Biochem. Biophys. : 70 -76.

  • Martinez, J. D., Stratagoules, E. D., Larue, J. M., Powell, A. A., Gause, P. R., Craven, M. T., Payne, M. B., Gerner, E. W. & Earnest, D. L. (1998): Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemoprotective agent ursodeoxycholic acid inhibits cell proliferation. Nutr. Canc., 31(2), 111-8.

    'Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemoprotective agent ursodeoxycholic acid inhibits cell proliferation. ' () 31 Nutr. Canc. : 111 -8.

    • Search Google Scholar
  • Potter, J. D., Slattery, M. L., Bostick, R. M. & Gapstur, S. M. (1993): Colon cancer: A review of the epidemiology. Epidemiol. Rev., 15, 499-545.

    'Colon cancer: A review of the epidemiology. ' () 15 Epidemiol. Rev. : 499 -545.

  • Revised Guide for the Care and Use of Laboratory Animals (1996): NCR, Washington, DC.

    Revised Guide for the Care and Use of Laboratory Animals , ().

  • Sedlak, J. & Lindsay, R. H. (1968): Estimation of total, protein bound and non protein sulfhydril groups in tissues with Ellmann's reagent. Anal. Biochem., 25, 192-205.

    'Estimation of total, protein bound and non protein sulfhydril groups in tissues with Ellmann's reagent. ' () 25 Anal. Biochem. : 192 -205.

    • Search Google Scholar
  • Seymour, I., Schwartz, I., Shires, G. T., Spencer, F. C. & Husser, W. C. (1989): Principles of surgery. McGraw-Hill Inc., New York, p. 1270.

    Principles of surgery , () 1270.

  • Shekels, L. L., Lyftogt, C. T. & Ho, S. B. (1996): Bile acid-induced alteration of mucin production in differentiated human colon cancer cell lines. Int. J. Biochem. Cell. Biol., 28(2), 193-201.

    'Bile acid-induced alteration of mucin production in differentiated human colon cancer cell lines. ' () 28 Int. J. Biochem. Cell. Biol. : 193 -201.

    • Search Google Scholar
  • Xu, G., Salen, G., Tint, G. S., Hguyen, L. B., Parker, T. T., Chen, T. S., Roberts, J., Kong, X. & Grenblatt, D. (1998): Regulation of classic and alternative bile acid synthesis in hypercholesterolemic rabbits: effects of cholesterol feeding and bile acid depletion. J. Lipid Res., 39(8), 1608-15.

    'Regulation of classic and alternative bile acid synthesis in hypercholesterolemic rabbits: effects of cholesterol feeding and bile acid depletion. ' () 39 J. Lipid Res. : 1608 -15.

    • Search Google Scholar
  • Sipos, P., Gamal, E. M., Blázovics, A., Metzger, P., Mikó, I. & Furka, I. (1997): Free radical reactions in the gallbladder. Acta Chir. Hung., 36, 329-31.

    'Free radical reactions in the gallbladder. ' () 36 Acta Chir. Hung. : 329 -31.

  • Velazquez, O. C., Seto, R. W., Bain, A. M., Fisher, J. & Rombeau, J. L. (1997): Deoxycholate inhibits in vivo butyrate-mediated BrDU labeling of the colonic crypt. J. Surg. Res., 69(2), 344-8.

    'Deoxycholate inhibits in vivo butyrate-mediated BrDU labeling of the colonic crypt. ' () 69 J. Surg. Res. : 344 -8.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 0 0 0
Aug 2021 2 0 0
Sep 2021 2 0 0
Oct 2021 3 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0