View More View Less
  • 1 Department of Agricultural Chemical Technology, Budapest University of Technology and Economics, Please ask the editor of the journal.
  • | 2 Department of Agricultural Chemical Technology, Budapest University of Technology and Economics, Please ask the editor of the journal.
  • | 3 Department of Agricultural Chemical Technology, Budapest University of Technology and Economics, Please ask the editor of the journal.
  • | 4 Department of Agricultural Chemical Technology, Budapest University of Technology and Economics, Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Methylotrophic yeast Pichia pastoris is an ideal host organism for recombinant protein production. However, adequate methanol feed is still a critical point of successful product formation in P. pastoris Mut S fermentations. Three methanol feed strategies were tested: an organic vapor sensor, a dissolved oxygen controlled methanol addition and a pre-determined model, as well. The organic vapor sensor proved to be unsuitable for methanol concentration measurements when samples were taken from the head space of the bioreactor, but may have the potential to substitute expensive gas analyzers in methanol fed-batch with a suitable selector submerged into the fermentation media. Dissolved oxygen and substrate consumption did not show strict mathematical relation. However, drop of dissolved oxygen tension for periodic methanol addition may be applied for the determination of the substrate concentration in the media. The rate of methanol consumption shows peaks at 0.45 and 0.95% (v/v) substrate concentrations. The rate of the specific methanol consumption of our model organism was determined. Based on the value of 0.023 h &1, which is significantly less than suggested by earlier experiments, a successful pre-determined methanol feed strategy was set up.

  • Ikegaya, K., Hirose, M., Ohmura, T. & Nokihara, K. (1997): Complete determination of disulfide forms of purified recombinant human serum albumin, secreted by the yeast Pichia pastoris. Anal. Chem., 69, 1986-1991.

    'Complete determination of disulfide forms of purified recombinant human serum albumin, secreted by the yeast Pichia pastoris. ' () 69 Anal. Chem. : 1986 -1991.

    • Search Google Scholar
  • Loewen, M. C., Liu, X., Davies, P. L. & Daugulis, A. J. (1997): Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris. Appl. Microbiol. Biotechnol., 48, 480-486.

    'Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris. ' () 48 Appl. Microbiol. Biotechnol. : 480 -486.

    • Search Google Scholar
  • Miele, R. G., Nilsen, S. L., Brito, T., Bretthauer, R. K. & Castellino, F. J. (1997): Glycosylation properties of the Pichia pastoris-expressed recombinant kringle 2 domain of tissue type plasminogen activator. Biotechnol. appl. Biochem., 25, 151-157.

    'Glycosylation properties of the Pichia pastoris-expressed recombinant kringle 2 domain of tissue type plasminogen activator. ' () 25 Biotechnol. appl. Biochem. : 151 -157.

    • Search Google Scholar
  • Ohtani, W., Ohda, T., Sumi, A., Kobayasi, K. & Ohmura, T. (1998): Analysis of Pichia pastoris components in recombinant human serum albumin by immunological assays and by HPLC with pulsed amperometric detection. Anal. Chem., 70, 425-429.

    'Analysis of Pichia pastoris components in recombinant human serum albumin by immunological assays and by HPLC with pulsed amperometric detection ' () 70 Anal. Chem. : 425 -429.

    • Search Google Scholar
  • Renard, J. M, Mansouri, A. & Cooney, C. L. (1985): Computer controlled fed-batch fermentation of methylotroph Pseudomonas AM1. Biotech. Lett., 6, 577-580.

    'Computer controlled fed-batch fermentation of methylotroph Pseudomonas AM1. ' () 6 Biotech. Lett. : 577 -580.

    • Search Google Scholar
  • Rodríguez Himénez, E., Sámchez, K., Roca, H. & Delgado, J. M. (1997): Different methanol feeding strategies to recombinant Pichia pastoris cultures producing high level of dextranase. Biotech. Tech., 11, 461-466.

    'Different methanol feeding strategies to recombinant Pichia pastoris cultures producing high level of dextranase. ' () 11 Biotech. Tech. : 461 -466.

    • Search Google Scholar
  • Rosenfeld, S. A., Nadeau, D., Tirado, J., Hollb, G. F., Knabb, R. M. & Jia, S. (1996): Production and purification of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif, 8, 476-482.

    'Production and purification of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris. ' () 8 Protein Expr. Purif : 476 -482.

    • Search Google Scholar
  • Scorer, C. A., Buckholz, R. G., Clare, J. J. & Romanos, M. A. (1993): The intracellular production and secretion of HIV-1 envelope protein in the methyotrophic yeast Pichia pastoris. Gene, 136, 111-119.

    'The intracellular production and secretion of HIV-1 envelope protein in the methyotrophic yeast Pichia pastoris. ' () 136 Gene : 111 -119.

    • Search Google Scholar
  • Austin, A. J., Jones, C. E. & Heeke, G. V. (1998): Production of human tissue factor using the Pichia pastoris expression system. Protein Expr. Purif., 13, 136-142.

    'Production of human tissue factor using the Pichia pastoris expression system. ' () 13 Protein Expr. Purif. : 136 -142.

    • Search Google Scholar
  • Biemans, R., Grégoire, D., Haumont, M., Bosseloir, A., Garcia, L., Jacquet, A., Dubeaux, C. & Bollen, A. (1998): The conformation of purified Toxoplasma gondii SAG1 antigen, secreted from engineered Pichia pastoris, is adequate for serorecognition and cell proliferation. J. Biotechnol., 66, 137-146.

    'The conformation of purified Toxoplasma gondii SAG1 antigen, secreted from engineered Pichia pastoris, is adequate for serorecognition and cell proliferation. ' () 66 J. Biotechnol. : 137 -146.

    • Search Google Scholar
  • Buckholz, R. G. & Gleeson, M. A. G. (1991): Yeast systems for the commercial production of heterologous proteins. Bio/Technology, 9, 1067-1072.

    'Yeast systems for the commercial production of heterologous proteins. ' () 9 Bio/Technology : 1067 -1072.

    • Search Google Scholar
  • Chen, Y., Krol, Y., Cino, J., Freedman, D., White, C. & Komtves, E. (1996): Continuous production of thrombomodulin from a Pichia pastoris fermentation. J. Chem. Tech. Biotechnol., 67, 143-148.

    'Continuous production of thrombomodulin from a Pichia pastoris fermentation. ' () 67 J. Chem. Tech. Biotechnol. : 143 -148.

    • Search Google Scholar
  • Cregg, J. M, Digan, M. E., Tshopp, J. F., Brierly, R. A., Craig, W. S., Velicelebi, G., Siegel, R. S. & Thill, G. P. (1989): Expression of foreign genes in Pichia pastoris. Genetics and molecular biology of industrial microorganisms. Amercian Society of Microbiology, USA, 343-352.

    Expression of foreign genes in Pichia pastoris. Genetics and molecular biology of industrial microorganisms , () 343 -352.

    • Search Google Scholar
  • Cregg, J. M, Vedvick, T. S. & Raschke, W. C. (1993): Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology, 11, 905-910.

    'Recent advances in the expression of foreign genes in Pichia pastoris. ' () 11 Bio/Technology : 905 -910.

    • Search Google Scholar
  • Easy Select Pichia Expression Kit.

  • Grinna, L. S. & Tschopp, J. F. (1989): Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast, 5, 107-115.

    'Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, ' () 5 Pichia pastoris. Yeast : 107 -115.

    • Search Google Scholar
  • Horwitz, W., Senzel, A., Reynolds, H. & Park, D. L. (1975): Official methods of analyses of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, USA, 654.

    Official methods of analyses of the Association of Official Analytical Chemists , () 654.

    • Search Google Scholar
  • Siegel, R. S. & Brierley, R. A. (1989): Methylotrophic yeast Pichia pastoris produced in high cell density fermentations with high cell yields as vehicle for recombinant protein production. Biotech. Bioengng., 34, 403-104.

    'Methylotrophic yeast Pichia pastoris produced in high cell density fermentations with high cell yields as vehicle for recombinant protein production. ' () 34 Biotech. Bioengng. : 403 -104.

    • Search Google Scholar
  • Guarna, M. M., Lesnicki, G. J., Tam, B. M., Robinson, J., Radzimnski, C. Z., Hasenwinkle, D., Boraston, A., Jervis, E., MacGillivray, R. T. A., Turner, R. F. B. & Kilburn, D. G. (1997): On-line monitoring and control of methanol concentration in shake-flask cultures of Pichia pastoris. Biotechnol. Bioengng., 56, 279-286.

    'On-line monitoring and control of methanol concentration in shake-flask cultures of Pichia pastoris. ' () 56 Biotechnol. Bioengng. : 279 -286.

    • Search Google Scholar
  • Austin, G. D., Sankhe, S. K. & Tsao, G. T. (1992): Monitoring and control of methanol concentration during polysaccharide fermentation using an on-line methanol sensor. Bioproc. Engng., 7, 241-247.

    'Monitoring and control of methanol concentration during polysaccharide fermentation using an on-line methanol sensor. ' () 7 Bioproc. Engng. : 241 -247.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 3 0 0
May 2021 2 0 0
Jun 2021 7 0 0
Jul 2021 4 0 0
Aug 2021 0 0 0