View More View Less
  • 1 Faculdade de Engenharía de Alimentos, Departamento de Tecnología de Alimentos, Universidade Estadual de Campinas. Campinas-SP. Caixa Postal 6121-13083. Brazil
  • | 2 Faculdade de Engenharía de Alimentos, Departamento de Tecnología de Alimentos, Universidade Estadual de Campinas. Campinas-SP. Caixa Postal 6121-13083. Brazil
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Single screw extrusion of cassava starch was evaluated as a pre-treatment for the enzymatic hydrolysis of the extrudate and fermentation to yield alcohol. The acid concentration, barrel temperature and moisture content showed that all the variables were significant. Increasing acid concentration or barrel temperature induced starch depolymerisation with a higher water solubility index and lower water absorption index. At 20 and 24% moisture contents the cold paste viscosity decreased. As a result of the addition of acid during extrusion cooking the degree of starch hydrolysis resulted in low hot paste viscosity. Acid concentration was significant in the production of reducing sugars. At concentrations above 0.024 N, as the temperature increased, the reducing sugar content also increased. Nevertheless, at concentrations below 0.024 N, the reducing sugar content showed the opposite result. The best yield of alcohol obtained from the extruded starch was 98.7% (0.56 g of ethanol/g starch), which, on average, was 5.7% and 6.8% higher than that obtained from starch extruded without acid and from starch gelatinized by the conventional method, respectively.

  • Fujio, Y., Igura, N. & Fukuoka H. (1995): Depolymerisation of molten-moisturized starch molecules by shearing-force under high temperature. Starch/Stärke, 47, 143-145.

    'Depolymerisation of molten-moisturized starch molecules by shearing-force under high temperature. ' () 47 Starch/Stärke : 143 -145.

    • Search Google Scholar
  • Grossmann, M. V. E. & El-Dash, A. A. (1988): Extrusion cooking of cassava starch for ethanol production. Starch/Stärke, 40, 303-307.

    'Extrusion cooking of cassava starch for ethanol production. ' () 40 Starch/Stärke : 303 -307.

    • Search Google Scholar
  • Hakulin, S., Linko, Y.-Y., Linko, P., Seiler, K. & Seibel, W. (1983): Enzymatic conversion of starch in twin-screw HTST-extruder. Starch/Stärke, 35, 411-414.

    'Enzymatic conversion of starch in twin-screw HTST-extruder. ' () 35 Starch/Stärke : 411 -414.

    • Search Google Scholar
  • Suzuki, S. (1970): Novel industrial processes for enzymatic conversion of starch, -in: Proceedings SOS/70. Third International Congress of Food Science and Technology. Inst. of Food Technologists, Washington, DC, pp. 484-490.

    'Novel industrial processes for enzymatic conversion of starch ' , , .

  • Tomasik, P. (1989): The thermal decomposition of carbohydrates. Adv. Carbohydr. Chem. Biochem., 47, 203-207.

    'The thermal decomposition of carbohydrates. ' () 47 Adv. Carbohydr. Chem. Biochem. : 203 -207.

    • Search Google Scholar
  • Menezes, T. J. B. (1978): Saccharification of cassava for ethyl alcohol production. Process Biochem., 13, 24-26.

    'Saccharification of cassava for ethyl alcohol production. ' () 13 Process Biochem. : 24 -26.

    • Search Google Scholar
  • Mercier, C. & Feillet, P. (1975): Modification of carbohydrate components by extrusion-cooking of cereal products. Cereal Chem., 52, 283-297.

    'Modification of carbohydrate components by extrusion-cooking of cereal products. ' () 52 Cereal Chem. : 283 -297.

    • Search Google Scholar
  • Nelson, N. (1944): Photometry adaptation of the Somogy-method for determination of glucose. J. biol. Chem., 153, 375-380.

    'Photometry adaptation of the Somogy-method for determination of glucose. ' () 153 J. biol. Chem. : 375 -380.

    • Search Google Scholar
  • Ben-Gera, Y., Rokey, G. Y. & Smith, O. B. (1984): Extrusion cooking of grains for ethanol production, -in: Jowitt, R. (Ed.) Extrusion cooking technology. Elsevier Applied Science Publishers, London, pp. 95-106.

    Extrusion cooking technology , () 95 -106.

  • Chouvel, H., Chay, P. B. & Cheftel, T. C. (1983): Enzymatic hydrolysis of starch and cereal flours at intermediate moisture contents in continuous extrusion-reactor. Lebensm. Wiss. Technol., 16, 346-353.

    'Enzymatic hydrolysis of starch and cereal flours at intermediate moisture contents in continuous extrusion-reactor. ' () 16 Lebensm. Wiss. Technol. : 346 -353.

    • Search Google Scholar
  • Colonna, P. & Mercier, C. (1983): Macromolecular modification of manioc starch components by extrusion-cooking with and without lipids. Carbohydr. Polym., 3, 87-107.

    'Macromolecular modification of manioc starch components by extrusion-cooking with and without lipids. ' () 3 Carbohydr. Polym. : 87 -107.

    • Search Google Scholar
  • Darnoko, & Artz, E. W. (1988): Twin-screw extrusion as a continuous pre-treatment process for the enzymatic hydrolysis of cassava. J. Fd. Set, 53, 1792-1799.

    'Twin-screw extrusion as a continuous pre-treatment process for the enzymatic hydrolysis of cassava. ' () 53 J. Fd. Set : 1792 -1799.

    • Search Google Scholar
  • Kervinen, R., Linko, P., Suortti, T. & Olkku, J. (1984): Wheat starch extrusion cooking with acid or alkali, -in: Zeuthern, P., Cheftel, J. C., Erickson, Jul, M., Leniger, H., Linko, P., Varela, G. & Vos, G. (Eds) Thermal processing and quality of foods. Elsevier Applied Sci. Publ., New York, pp. 257-261.

    Thermal processing and quality of foods , () 257 -261.

  • Kirby, A. R., Ollett, A. L., Parker, R. & Smith, A. C. (1988): An experimental study of screw configuration effects in the twin-screw extrusion cooking of maize grits. J. Fd Engng., 8, 242-272.

    'An experimental study of screw configuration effects in the twin-screw extrusion cooking of maize grits. ' () 8 J. Fd Engng. : 242 -272.

    • Search Google Scholar
  • Korn, S. R. (1982): Extrusion processing of corn for alcohol production. Master of Science Thesis, Colorado State University, 114 p.

  • Korn, S. R. & Harper, J. M. (1982): Extrusion of corn for ethanol fermentation. Biotechnol. Letters, 4, 417-422.

    'Extrusion of corn for ethanol fermentation. ' () 4 Biotechnol. Letters : 417 -422.

  • Linko, P. (1989): Extrusion cooking in bioconversions. -in: Mercier, C., Linko, P. & Harper, J. M. (Eds), Extrusion cooking. AACC Publ., St. Paul, pp. 235-245.

    Extrusion cooking , () 235 -245.

  • Linko, P., Anttla, J. & Olkku, J. (1978): Retention of amylolytic activity in HTST-extrusion cooking. Kemia-Kemi., 5, 691-698.

    'Retention of amylolytic activity in HTST-extrusion cooking. ' () 5 Kemia-Kemi. : 691 -698.

    • Search Google Scholar
  • Linko, Y.-Y., Vourien, V., Olkku, J. & Linko, P. (1980): The effect of HTST-extrusion on retention of cereal α-amylase activity and on enzymatic hydrolysis of barley starch, -in: Linko, P. & Lanikari, J. (Eds) Food process engineering. Vol 2, Enzyme engineering in food processing. Applied Science Publishers, London, pp. 210-223.

    Food process engineering. Vol 2, Enzyme engineering in food processing , () 210 -223.

    • Search Google Scholar
  • Linko, P., Hakulin, S. & Linko, Y.-Y. (1983a): Extrusion cooking of barley starch for the production of glucose syrup and ethanol. J. Cereal Sci., 1, 275-284.

    'Extrusion cooking of barley starch for the production of glucose syrup and ethanol. ' () 1 J. Cereal Sci. : 275 -284.

    • Search Google Scholar
  • Linko, P., Hakulin, S. & Linko, Y.-Y. (1983b): Extrusion cooking and bioconversions. J. Fd Engng., 2, 243-257.

    'Extrusion cooking and bioconversions. ' () 2 J. Fd Engng. : 243 -257.

  • Linko, P., Linko, Y. Y. & Hakulin, S. (1984): Continuous extrusion processing of starchy materials for the production of syrups and ethanol. -in: Zeuthern, P., Cheftel, J. C., Erickson, Jul, M., Leniger, H., Linko, P., Varela, G. & Vos, G. (Eds), Thermal processing and quality of foods. Elsevier Applied Sci. Publ., New York, pp. 122-126.

    Thermal processing and quality of foods , () 122 -126.

  • Park, K. Y. & Rivera, C. B. (1982): Alcohol production from various enzyme-converted starches with and without cooking. Biotechnol. Bioengng., 24, 495-500.

    'Alcohol production from various enzyme-converted starches with and without cooking. ' () 24 Biotechnol. Bioengng. : 495 -500.

    • Search Google Scholar
  • Pérez-Sira, E. & González-Parada, Z. (1997): Functional properties of cassava (Manihot esculenta Cratz) starch modified by physical methods. Starch/Stärke, 49, 49-53.

    'Functional properties of cassava (Manihot esculenta Cratz) starch modified by physical methods. ' () 49 Starch/Stärke : 49 -53.

    • Search Google Scholar
  • Rodis, P., Wen, L.-F. & Wasserman, B. P. (1993): Assessment of extrusion-induced starch fragmentation by gel permeation chromatography and metylation analysis. Cereal Chem., 70, 152-157.

    'Assessment of extrusion-induced starch fragmentation by gel permeation chromatography and metylation analysis. ' () 70 Cereal Chem. : 152 -157.

    • Search Google Scholar
  • SAS (1987): Proprietary Software Release 6.03. SAS Institute, Cary, NC.

    Proprietary Software Release 6.03 , ().

  • Somogy, M. (1945): A new reagent for the determination of sugars. J. biol. Chem., 160, 61-68.

    'A new reagent for the determination of sugars. ' () 160 J. biol. Chem. : 61 -68.

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 5 0 0
Mar 2021 2 0 0
Apr 2021 1 0 0
May 2021 2 0 0
Jun 2021 4 0 0
Jul 2021 11 0 0
Aug 2021 0 0 0