View More View Less
  • 1 Please ask the editor of the journal.
  • | 2 Department of Refrigeration and Livestock Products' Technology, Szent István University H-1118 Budapest, Ménesi út 45. Hungary
  • | 3 Department of Refrigeration and Livestock Products' Technology, Szent István University H-1118 Budapest, Ménesi út 45. Hungary
  • | 4 Department of Refrigeration and Livestock Products Technology, Faculty of Food Science, Szent István University H-1118 Budapest, Ménesi út 43-45. Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

A recombinant Bacillus subtilis strain containing a plasmid encoding a luxAB fusion, which gave bioluminescence upon addition of an exogenous long-chain aldehyde as substrate for the endogenous luciferase enzyme, was used as test organism. Its populations were treated with 300 MPa for 20 min, or 600 MPa for 20 min at around room temperature, and this treatment is foreseen as a quality-friendly, non-thermal pasteurisation of foods. Besides the estimation of viable cell counts, the extent of pressure-induced germination and post-process development were investigated by phase-contrast microscopy, turbidimetry and luminometry. Increased heat sensitivity of pressurized spore populations was observed both by viable cell counting during a linearly programmed elevation of temperature and a simultaneous differential scanning calorimetry. This was related to pressure-induced germination of spores, although a small fraction remained ungerminated. The luciferase pool built into the spores during their formation seemed to have withstood pressurization. Spore germination was accompanied by the emergence of bioluminescence which also indicated sensitively the characteristic changes of metabolic activity running parallel with the development of untreated cell populations and that of the survivors of the hydrostatic pressure treatments when the cells were incubated in a nutrient broth.

  • Hill, P. J., Hall, L., Wincombe, D. A., Soper, C. J., Setlow, P., Wattes, W. M., Denyer, S. & Stewart, G. S. A. B. (1994): Bioluminescence and spores as biological indicators of inimical processes. J. appl. Bacteriol, Symp. Supplem., 76, 129S-132S.

    'Bioluminescence and spores as biological indicators of inimical processes. ' () 76 J. appl. Bacteriol, Symp. Supplem. : 129S -132S.

    • Search Google Scholar
  • Hoover, D. G. (2002): Microbial inactivation by high pressure, -in: Jujena, V. K. & Sofos, J. N. (Eds): Control offoodborne microorganisms. Marcel Dekker, Inc., New York, pp. 419-449.

    Control offoodborne microorganisms , () 419 -449.

  • Johnson, F. H. & Zobell, C. E. (1949): The retardation and thermal disinfection of Bacillus subtilis spores by hydrostatic pressure. J. Bacteriol, 57, 353-358.

    'The retardation and thermal disinfection of Bacillus subtilis spores by hydrostatic pressure. ' () 57 J. Bacteriol : 353 -358.

    • Search Google Scholar
  • Mohácsi-Farkas, Cs., Kiskó, G., Mészáros, L. & Farkas, J. (2002): Pasteurisation of tomato juice by high hydrostatic pressure treatment or by its combination with essential oils. Acta Alimentaria, 31, 243-252.

    'Pasteurisation of tomato juice by high hydrostatic pressure treatment or by its combination with essential oils. ' () 31 Acta Alimentaria : 243 -252.

    • Search Google Scholar
  • Priest, F. G. (1989): Isolation and identification of anaerobic endospore-forming bacteria, -in: Harwood, C. R. (Ed.) Biotechnology handbooks 2: Bacillus. Plenum Press, New York, pp. 27-56.

    Biotechnology handbooks 2: Bacillus , () 27 -56.

  • Sale, A. J. H., Gould, G. W. & Hamilton, W. A. (1970): Inactivation of bacterial spores by high hydrostatic pressure. J. gen. Microbiol, 60, 323-334.

    'Inactivation of bacterial spores by high hydrostatic pressure. ' () 60 J. gen. Microbiol : 323 -334.

    • Search Google Scholar
  • Simpson, R. K. & Gilmour, A. (1997): The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Lett. appl. Microbiol, 25, 48-53.

    'The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. ' () 25 Lett. appl. Microbiol : 48 -53.

    • Search Google Scholar
  • Timson, W. J. & Short, A. J. (1965): Resistance of microorganisms to hydrostatic pressure. Biotechnol. Bioengng, 7, 139-159.

    'Resistance of microorganisms to hydrostatic pressure. ' () 7 Biotechnol. Bioengng : 139 -159.

    • Search Google Scholar
  • Wuytack, E. E., Boven, S. & Michtels, C. W. (1998): Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Appl. environ. Microbiol, 64, 3220-3224.

    'Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. ' () 64 Appl. environ. Microbiol : 3220 -3224.

    • Search Google Scholar
  • Clouston, J. G. & Wills, P. A. (1969): Initiation of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. J. Bacteriol., 97, 684-690.

    'Initiation of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. ' () 97 J. Bacteriol. : 684 -690.

    • Search Google Scholar
  • Farkas, J., Andrássy, É., Formanek, Z. & Mészáros, L. (2002): Luminometric and differential scanning calorimetry (DSC) studies on heat- and radiation inactivation of Bacillus subtilis luxAB spores. Acta microbiol. immunol. Hung., 49, 155-164.

    'Luminometric and differential scanning calorimetry (DSC) studies on heat- and radiation inactivation of Bacillus subtilis luxAB spores. ' () 49 Acta microbiol. immunol. Hung. : 155 -164.

    • Search Google Scholar
  • Gould, G. W. (1995): The microbe as a high pressure target, -in: Ledward, D. A., Johnston, D. E., Ernshaw, R. G. & Hastings, A. P. (Eds) High pressure processing of foods. Nottingham University Press, Nottingham, pp. 27-35.

    High pressure processing of foods , () 27 -35.

  • Gould, G. W. & Sale, A. T. H. (1970): Initiation of germination of bacterial spores by hydrostatic pressure. J. gen. Microbiol, 60, 335-346.

    'Initiation of germination of bacterial spores by hydrostatic pressure. ' () 60 J. gen. Microbiol : 335 -346.

    • Search Google Scholar
  • Hassan, Y., Mészáros, L., Simon, A., Tuboly, E., Mohácsi-Farkas, Cs. & Farkas, J. (2002): Comparative studies on gamma radiation and high pressure induced effects on minced beef. Acta Alimentaria, 31, 253-264.

    'Comparative studies on gamma radiation and high pressure induced effects on minced beef. ' () 31 Acta Alimentaria : 253 -264.

    • Search Google Scholar
  • Hill, P. J., Rees, C. E. D., Winson, M. K. & Stewart, G. S. A. B. (1993): Review: the application of lux genes. Biotechnol. appl. Biochem., 17, 3-14.

    'Review: the application of lux genes. ' () 17 Biotechnol. appl. Biochem. : 3 -14.

  • Wang, P. Z. & Doi, R. H. (1984): Overlapping promoters transcribed by Bacillus subtilis sigma-55 and sigma-37 RNA polymerase holoenzymes during growth and stationary phases. J. biol Chem., 259, 8619-8625.

    'Overlapping promoters transcribed by Bacillus subtilis sigma-55 and sigma-37 RNA polymerase holoenzymes during growth and stationary phases. ' () 259 J. biol Chem. : 8619 -8625.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 4 0 0
Jul 2021 2 0 0
Aug 2021 1 0 0
Sep 2021 4 0 0
Oct 2021 3 0 0
Nov 2021 23 1 2
Dec 2021 0 0 0