Authors:
K. Szentmihályi Institute of Material and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences H-1025 Budapest, Pusztaszeri út 59-67. Hungary

Search for other papers by K. Szentmihályi in
Current site
Google Scholar
PubMed
Close
,
G. Taba I: Institute of Material and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences; II: Department of Internal Medicine, Semmelweis University I: H-1025 Budapest, Pusztaszeri út 59-67. Hungary; II: H-1088 Budapest, Szentkirályi utca 46. Hungary

Search for other papers by G. Taba in
Current site
Google Scholar
PubMed
Close
,
C. Lado I: Institute of Material and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences; II: Department of Biochemistry and Food Technology, Budapest University of Technology and Economics I: H-1025 Budapest, Pusztaszeri út 59-67. Hungary; II: H-1111 Budapest, Műegyetem rakpart 3-9. Hungary

Search for other papers by C. Lado in
Current site
Google Scholar
PubMed
Close
,
J. Fodor Institute of Material and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences H-1025 Budapest, Pusztaszeri út 59-67. Hungary

Search for other papers by J. Fodor in
Current site
Google Scholar
PubMed
Close
,
M. Then Institute of Pharmacognosy, Semmelweis University H-1085 Budapest, Üllői út 26. Hungary

Search for other papers by M. Then in
Current site
Google Scholar
PubMed
Close
, and
É. Szőke Institute of Pharmacognosy, Semmelweis University H-1085 Budapest, Üllői út 26. Hungary

Search for other papers by É. Szőke in
Current site
Google Scholar
PubMed
Close
Restricted access

Herbal teas may be effective in adjuvant therapy for the prevention of complications of diabetes mellitus II. Agrimoniae herba, Betulae folium, Bursae pastoris herba, Foenigraeci semen, Galegae herba, Maydis stigma, Taraxaci radix, Phaseoli fructus sine seminibus, Urticae folium, and their teas were analysed by ICP-OES for element content. Concentration of the elements of crude drug samples obtained are in good agreement with the average concentrations of plants, although some significantly high concentration has been found for manganese (893 mg kg-1), zinc (275 mg kg-1) and iron (492 mg kg-1) in Betulae folium, for copper (41.2 mg kg-1) in Galegae herba, for iron (2692 mg kg-1) in Taraxaci radix, for calcium (41210 mg kg-1) and magnesium (6275 mg kg-1) in Urticae folium. The common characteristic feature of crude drugs is the relatively high concentration of chromium (0.8-16.3 mg kg-1). Ion concentrations of teas are relatively low. The quantities of metal ions do not cover the daily needs, nevertheless, they may be important as food supplements. According to U.S. Recommended Dietary Allowances (RDA), the following teas are good sources: Agrimoniae herba for chromium, Betulae folium for manganese, Taraxaci radix for copper and chromium, Urticae folium for potassium and calcium. The dissolution of elements from plant drugs varies: potassium (22.5-74.7%), sodium (1.9-60.5%), calcium (6.6-28.1%), magnesium (12.3-52.5%) and copper (3.7-51.4%) are readily dissolved. The dissolution of manganese (6.8-32.3%) and of zinc (0-31%) is lower. The dissolution of chromium from Agrimoniae herba (9.55%) is significantly higher, while the dissolution ranges from other plant drugs are between 0-5.9%.

  • Bertuglia, S., Malandrino, S. & Colantuoni, A. (1995): Effects of the natural flavonoid delphinidin on diabetic microangiopathy. Arzneim.-Forsch., 45, 481-485.

    'Effects of the natural flavonoid delphinidin on diabetic microangiopathy. ' () 45 Arzneim.-Forsch. : 481 -485 .

    • Search Google Scholar
  • Carpertier, J. L., Gorden, P. & Lew, D. P. (1992): Calcium ions are required for the intracellular routing of insulin and its receptor. Exp. Cell Res., 198, 144-149.

    'Calcium ions are required for the intracellular routing of insulin and its receptor. ' () 198 Exp. Cell Res. : 144 -149 .

    • Search Google Scholar
  • Chang, H. H., Lai, M. H., Hou, W. C. & Huang, C. L. (2004): Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. J. agric. Fd Chem., 52, 1385-1389.

    'Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. ' () 52 J. agric. Fd Chem. : 1385 -1389 .

    • Search Google Scholar
  • Song, Y. Q., Manson, J. E., Buring, J. E. & Liu, S. M. (2004): Dieatry magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care, 27, 59-65.

    'Dieatry magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. ' () 27 Diabetes Care : 59 -65 .

    • Search Google Scholar
  • Vaquero, M. P., Herrero, E., Sastre, J., Iglesias, L. P. & Pallardo, L. F. (1993): Magnesium. New perspectives. Rev. clin. Esp., 193, 315-321.

    'Magnesium. New perspectives. ' () 193 Rev. clin. Esp. : 315 -321 .

  • Vertommen, J., Enden, M., Simoens, L. & Leuw, I. D. (1994): Flavonoid treatment reduces glycation and lipid peroxidation in experimental diabetic rats. Phytother. Res., 8, 430-432.

    'Flavonoid treatment reduces glycation and lipid peroxidation in experimental diabetic rats. ' () 8 Phytother. Res. : 430 -432 .

    • Search Google Scholar
  • Vicario, P. P., Saperstein, R. & Benum, A. (1988): Role of divalent metals in the activation and regulation of insulin receptor tyrosine kinase. BioSystems, 22, 55-66.

    'Role of divalent metals in the activation and regulation of insulin receptor tyrosine kinase. ' () 22 BioSystems : 55 -66 .

    • Search Google Scholar
  • Wolff, S. P. (1993): Transition metals and oxidative stress in the complications of diabetes, -in: Grie, F. A. & Wessel, K. (Eds) Role of anti-oxidants in diabetes mellitus. Universimed Verlag, Frankfurt/Main, pp. 56-105.

    Role of anti-oxidants in diabetes mellitus , () 56 -105 .

  • Djurhuus, H. S., Skott, P., Hother-Nielson, O., Klitgard, N. A. & Bech-Nielsen, H. (1995): Insulin increases renal magnesium excreation: a possible cause of magnesium depletion in hyperinsuliaemic state. Diabet. Med., 12, 664-669.

    'Insulin increases renal magnesium excreation: a possible cause of magnesium depletion in hyperinsuliaemic state. ' () 12 Diabet. Med. : 664 -669 .

    • Search Google Scholar
  • Fagan, T. E., Cefaratti, C. & Romani, A. (2004): Streptozotocin-induced diabetes impairs Mg2+ homeostasis and uptake in rat liver cells. Am. J. Physiol. Endocrin. Metab., 286, E184-E193.

    'Streptozotocin-induced diabetes impairs Mg2+ homeostasis and uptake in rat liver cells. ' () 286 Am. J. Physiol. Endocrin. Metab. : E184 -E193 .

    • Search Google Scholar
  • Faure, P. (2003): Protecive effects of antioxidant micronutrients (vitamin E, zinc and selenium) in type 2 diabetes mellitus. Clin. Chem. Lab. Med., 41, 995-998.

    'Protecive effects of antioxidant micronutrients (vitamin E, zinc and selenium) in type 2 diabetes mellitus. ' () 41 Clin. Chem. Lab. Med. : 995 -998 .

    • Search Google Scholar
  • Frye, R. L. (2003): Optimal care of patients with type 2 diabetes mellitus and coronary artery disease. Am. J. Med., 115, 93-98.

    'Optimal care of patients with type 2 diabetes mellitus and coronary artery disease. ' () 115 Am. J. Med. : 93 -98 .

    • Search Google Scholar
  • Hungarian Standard (1988): Gyógynövények. Kukoricabibe (Maydis stigma). [Medicinal plants. Silk of corn (Maydis stigma).] MSz4989.

  • Iwu, M. M., Okunji, C. O., Akah, P., Tempesta, M. S. & Corley, D. (1990): Dioscoretin: the hypoglycemic principle of Dioscorea dumetorum. Planta Med., 56, 119-120.

    'Dioscoretin: the hypoglycemic principle of Dioscorea dumetorum. ' () 56 Planta Med. : 119 -120 .

    • Search Google Scholar
  • Kabata-Pendias, A. & Pendias, H. (1984): Trace elements in soils and plants. CRC Press, Inc., Boca Raton, Florida, pp. 1-315.

    1 315

  • Kojima, Y., Yoshikawa, Y., Ueda, E., Ueda, R., Yamamoto, S., Kumekawa, K., Yanagihara, N. & Sakurai, H. (2003): Insulinomimetic zinc(II) complexes with natural products: In vitro evaluation and blood glucose lowering effect in KK-A(y) mice with type 2 diabetes mellitus. Chem. pharmaceut. Bull, 51, 1006-1008.

    'Insulinomimetic zinc(II) complexes with natural products: In vitro evaluation and blood glucose lowering effect in KK-A(y) mice with type 2 diabetes mellitus. ' () 51 Chem. pharmaceut. Bull : 1006 -1008 .

    • Search Google Scholar
  • Kubo, M., Matsuda, H., Tukuoka, K., Kobayashi, Y., Ma, S. & Tanaka, T. (1994): Studies of anti-cataract drugs from natural sources. I. Effects of a metanolic extract and the alkaloidal components from Cordyalis tuber on in vitro aldose reductase activity. Biol. Pharm., 17, 458-459.

    'Studies of anti-cataract drugs from natural sources. I. Effects of a metanolic extract and the alkaloidal components from Cordyalis tuber on in vitro aldose reductase activity. ' () 17 Biol. Pharm. : 458 -459 .

    • Search Google Scholar
  • Lopez-Ridaura, R., Willett, W. C., Rimm, E. B., Liu, S. M., Stampfer, M., Manson, J. E. & Flu, F. B. (2004): Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care, 27, 134-140.

    'Magnesium intake and risk of type 2 diabetes in men and women. ' () 27 Diabetes Care : 134 -140 .

    • Search Google Scholar
  • McCarty, M. F. & Rubin, E. J. (1984): Rationales for micronutrient supplementation in diabetes. Med. Hypotheses, 13, 139-151.

    'Rationales for micronutrient supplementation in diabetes. ' () 13 Med. Hypotheses : 139 -151 .

    • Search Google Scholar
  • Mueller, A., Diemann, E. & Sassenberg, P. (1988): Chromium content of medicinal plants used against diabetes mellitus type II. Naturwissenschaften, 7, 155-156.

    'Chromium content of medicinal plants used against diabetes mellitus type II. ' () 7 Naturwissenschaften : 155 -156 .

    • Search Google Scholar
  • Ong, K. C., Khoo, H. E. & Das, N. P. (1995): Tannic acid inhibits insulin-stimulated lipoxigenesis in rat adipose tissue and insulin receptor function in vitro. Experientia, 51, 577-584.

    'Tannic acid inhibits insulin-stimulated lipoxigenesis in rat adipose tissue and insulin receptor function in vitro. ' () 51 Experientia : 577 -584 .

    • Search Google Scholar
  • Ph.Hg. (1992): Pharmacopoeia Hungarica. VII. ed. Medicina, Budapest, pp. 1543-1545, 1607-1609.

    Pharmacopoeia Hungarica , () 1543 -1545 .

  • RDA (2002): Recommended Dietary Allowances, -in: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington DC, pp. 1-773.

  • Reddy, K. S. & Katan, M. B. (2004): Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Publ. Health Nutr., 7, 167-186.

    'Diet, nutrition and the prevention of hypertension and cardiovascular diseases. ' () 7 Publ. Health Nutr. : 167 -186 .

    • Search Google Scholar
  • Rodrigez-Moran, M. & Guerrero-Romero, F. (2003): Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects -A randomized double-blind controlled trial. Diabetes Care, 26, 1147-1152.

    'Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects -A randomized double-blind controlled trial. ' () 26 Diabetes Care : 1147 -1152 .

    • Search Google Scholar
  • Rubenstein, A. H., Levin, N. W. & Elliott, G. A. (1995): Hypoglycaemia induced by manganese. Nature, 194, 188-189.

    'Hypoglycaemia induced by manganese. ' () 194 Nature : 188 -189 .

  • Shin, K. H., Chung, M. S., Chae, Y. J. & Yoon, K. Y. (1993): A survey for aldose reductase inhibition of herbal medicines. Fitoterapia, LXIV, 130-133.

    'A survey for aldose reductase inhibition of herbal medicines ' () LXIV Fitoterapia : 130 -133 .

    • Search Google Scholar
  • Collapse
  • Expand

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • H. He (Henan Institute of Science and Technology, Xinxiang, China)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2022  
Web of Science  
Total Cites
WoS
892
Journal Impact Factor 1.1
Rank by Impact Factor

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Impact Factor
without
Journal Self Cites
1.1
5 Year
Impact Factor
1
Journal Citation Indicator 0.22
Rank by Journal Citation Indicator

Food Science and Technology (Q4)
Nutrition and Dietetics (Q4)

Scimago  
Scimago
H-index
32
Scimago
Journal Rank
0.231
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1.7
Scopus
CIte Score Rank
Food Science 225/359 (37th PCTL)
Scopus
SNIP
0.408

2021  
Web of Science  
Total Cites
WoS
856
Journal Impact Factor 1,000
Rank by Impact Factor Food Science & Technology 130/143
Nutrition & Dietetics 81/90
Impact Factor
without
Journal Self Cites
0,941
5 Year
Impact Factor
1,039
Journal Citation Indicator 0,19
Rank by Journal Citation Indicator Food Science & Technology 143/164
Nutrition & Dietetics 92/109
Scimago  
Scimago
H-index
30
Scimago
Journal Rank
0,235
Scimago Quartile Score

Food Science (Q3)

Scopus  
Scopus
Cite Score
1,4
Scopus
CIte Score Rank
Food Sciences 222/338 (Q3)
Scopus
SNIP
0,387

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 776 EUR / 944 USD
Print + online subscription: 896 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 30 0 0
Jan 2024 45 2 0
Feb 2024 11 0 0
Mar 2024 25 1 0
Apr 2024 41 0 0
May 2024 6 0 0
Jun 2024 0 0 0