View More View Less
  • 1 University of Burdwan Mycology & Plant Pathology Laboratory, Department of Botany Burdwan 713104 West Bengal India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Aquatic weed water hyacinth was evaluated for its potential to be used as feedstock for fermentable sugar production via enzymatic hydrolysis. Critical factors (pretreatment of substrate, concentration of substrate, incubation period, pH, incubation temperature) affecting enzymatic hydrolysis of water hyacinth were optimised for maximum production of fermentable sugars. Enzyme (mainly cellulase) produced by Trichoderma reesei ATCC 26921 in a simple medium containing the plant biomass as the sole carbon source was directly used at a particular concentration for hydrolysis. It was observed that acid-alkali pretreated water hyacinth was far more accessible to cellulolytic enzymes than untreated one and hence was hydrolyzed to a greater extent. Maximum hydrolysis (41.7%) was obtained with 4% (w/v) pretreated water hyacinth after 72 h of incubation at pH 5.2 and at a temperature of 45 °C. With a view to enhance the percentage of enzymatic hydrolysis, culture metabolite (enzyme source) of T. reesei was supplemented with enzyme from a β-glucosidase mutant, Aspergillus phoenicis . This β-glucosidase enriched cellulase preparation facilitated further enhancement (49.7%) of hydrolysis at FPase to β-glucosidase ratio of 1:1.2. Gas-liquid-chromatographic analysis of the hydrolyzed broth, thus obtained under optimal conditions, revealed the presence of glucose (12.5 g l −1 ) as the most predominant fermentable sugar besides having the presence of xylose, arabinose, mannose and galactose. This widens up the feasibility of utilising such hydrolysate as a cheap carbon source (glucose and to some extent xylose) for yeast fermentation to produce fuel ethanol.

  • Abraham, M. & Kurup, G.M. (1997): Kinetic of the enzymatic saccharification of pretreated Tapioca waste ( Manihot esculenta ) and water hyacinth ( Eichhornia crassipes ). Appl. Biochem. Biotechnol. , 66 , 133–145.

    Kurup G.M. , 'Kinetic of the enzymatic saccharification of pretreated Tapioca waste (Manihot esculenta) and water hyacinth (Eichhornia crassipes) ' (1997 ) 66 Appl. Biochem. Biotechnol. : 133 -145.

    • Search Google Scholar
  • Allen, A.L. & Roche, C.D. (1989): Effect of strain and fermentation conditions on production of cellulase by Trichoderma reesei . Biotechnol. Bioengng. , 33 , 650–656.

    Roche C.D. , 'Effect of strain and fermentation conditions on production of cellulase by Trichoderma reesei ' (1989 ) 33 Biotechnol. Bioengng. : 650 -656.

    • Search Google Scholar
  • Awafo, V.A., Chahal, D.S., Simpson, B.K. & Le, G.B.B. (1996): Production of cellulose systems by selected mutants of Trichoderma reesei in solid state fermentation and their hydrolytic potentials. Appl. Biochem. Biotechnol. , 57/58 , 461–470.

    Le G.B.B. , 'Production of cellulose systems by selected mutants of Trichoderma reesei in solid state fermentation and their hydrolytic potentials ' (1996 ) 57/58 Appl. Biochem. Biotechnol. : 461 -470.

    • Search Google Scholar
  • Bollok, M. & Réczey, K. (2000): Cellulase enzyme production by various fungal strains on different carbon sources. Acta Alimenaria , 29 , 155–168.

    Réczey K. , 'Cellulase enzyme production by various fungal strains on different carbon sources ' (2000 ) 29 Acta Alimenaria : 155 -168.

    • Search Google Scholar
  • Breuil, C., Mayers, P. & Saddler, J.N. (1986): Substrate conditions that influence the assays for determining the β-glucosidase activity of cellulolytic microorganism. Biotechnol. Bioengng. , 28 , 1653–1656.

    Saddler J.N. , 'Substrate conditions that influence the assays for determining the β-glucosidase activity of cellulolytic microorganism ' (1986 ) 28 Biotechnol. Bioengng. : 1653 -1656.

    • Search Google Scholar
  • Detroy, R.W., Cunnigham, R.L., Bothast, R.J., Bagby, M.O. & Herman, A. (1982): Bioconversion of wheat straw cellulose/hemicellulose to ethanol by Saccharomyces uvarum and Pachysolen tannophilus . Biotechnol. Bioengng. , 24 , 1105–1113.

    Herman A. , 'Bioconversion of wheat straw cellulose/hemicellulose to ethanol by Saccharomyces uvarum and Pachysolen tannophilus ' (1982 ) 24 Biotechnol. Bioengng. : 1105 -1113.

    • Search Google Scholar
  • Dos Santos, M.C. & Lenzi, E. (2000): The use of aquatic macrophytes ( Eichhornia crassipes ) as a biological filter in the treatment of lead contaminated effluents. Environ. Technol. , 21 , 615–622.

    Lenzi E. , 'The use of aquatic macrophytes (Eichhornia crassipes) as a biological filter in the treatment of lead contaminated effluents ' (2000 ) 21 Environ. Technol. : 615 -622.

    • Search Google Scholar
  • Ghose, T.K. & Bisaria, V.S. (1984): Measurement of hemicellulase activities. Part I. Xylanases . Biotechnology Commission, International Union for Pure and Applied Chemistry, IIT, John Wiley, New Delhi, India, pp. 1–36.

    Bisaria V.S. , '', in Measurement of hemicellulase activities. Part I. Xylanases , (1984 ) -.

  • Kaur, R., Dhillon, G.S., Singh, A. & Kalra, M.S. (1996): Xylanase and cellulase production by mutant N-10 of Trichoderma reesei QM 9414. J. Res. Punjab Agric. Univ. , 32 , 170–177.

    Kalra M.S. , 'Xylanase and cellulase production by mutant N-10 of Trichoderma reesei QM 9414 ' (1996 ) 32 J. Res. Punjab Agric. Univ. : 170 -177.

    • Search Google Scholar
  • Krishna, S.H., Rao, K.C.S., Babu, J.S. & Reddy, D.S. (2000): Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess Engng. , 22 , 467–470.

    Reddy D.S. , 'Studies on the production and application of cellulase from Trichoderma reesei QM-9414 ' (2000 ) 22 Bioprocess Engng. : 467 -470.

    • Search Google Scholar
  • Lena, G.D. & Quaglia, G.B. (1992): Saccharification and protein enrichment of sugar beet pulp by Pleurotus florida . Biotechnol. Techniques , 6 , 571–574.

    Quaglia G.B. , 'Saccharification and protein enrichment of sugar beet pulp by Pleurotus florida ' (1992 ) 6 Biotechnol. Techniques : 571 -574.

    • Search Google Scholar
  • Mahmoud, Y.A.G. (2006): Biodegradation of water hyacinth by growing Pleurotus ostreatus and P. sajorcaju and trial for using in production of mushroom spawn. Acta Alimentaria , 35 , 63–72.

    Mahmoud Y.A.G. , 'Biodegradation of water hyacinth by growing Pleurotus ostreatus and P. sajorcaju and trial for using in production of mushroom spawn ' (2006 ) 35 Acta Alimentaria : 63 -72.

    • Search Google Scholar
  • Miller, G.L. (1959): Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. , 31 , 426–428.

    Miller G.L. , 'Use of dinitrosalicylic acid reagent for determination of reducing sugars ' (1959 ) 31 Anal. Chem. : 426 -428.

    • Search Google Scholar
  • Motwani, M., Seth, R., Daginawala, H.F. & Khanna, P. (1993): Microbial production of 2,3-butanediol from water hyacinth. Biores. Technol. , 44 , 187–195.

    Khanna P. , 'Microbial production of 2,3-butanediol from water hyacinth ' (1993 ) 44 Biores. Technol. : 187 -195.

    • Search Google Scholar
  • Mukhopadhyay, S. & Nandi, B. (1999): Optimization of cellulase production by Trichoderma reesei ATCC 26921 using a simplified medium on water hyacinth biomass. J. Sci. Ind. Res. , 58 , 107–111.

    Nandi B. , 'Optimization of cellulase production by Trichoderma reesei ATCC 26921 using a simplified medium on water hyacinth biomass ' (1999 ) 58 J. Sci. Ind. Res. : 107 -111.

    • Search Google Scholar
  • Mukhopadhyay, S. & Nandi, B. (2001): Cellulase production by Trichoderma reesei on pretreated water hyacinth: effect of nutrients. J. Mycopathol. Res. , 39 , 57–60.

    Nandi B. , 'Cellulase production by Trichoderma reesei on pretreated water hyacinth: effect of nutrients ' (2001 ) 39 J. Mycopathol. Res. : 57 -60.

    • Search Google Scholar
  • Palmqvist, E., Hahn-Hagerdal, B., Galbe, M., Larsson, M., Sternberg, K., Szengyel, Z., Tengborg, C. & Zacchi, G. (1996): Design and operation of a bench-scale process development unit for the production of ethanol from lignocellulosics. Biores. Technol. , 58 , 171–179.

    Zacchi G. , 'Design and operation of a bench-scale process development unit for the production of ethanol from lignocellulosics ' (1996 ) 58 Biores. Technol. : 171 -179.

    • Search Google Scholar
  • Saddler, J.N., Hogan, C.M. & Louis-Seize, G. (1985): A comparison between cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30. Appl. Microbiol. Biotechnol. , 22 , 139–145.

    Louis-Seize G. , 'A comparison between cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30 ' (1985 ) 22 Appl. Microbiol. Biotechnol. : 139 -145.

    • Search Google Scholar
  • Saeman, J.F., Moore, W.E., Mitchell, R.L. & Millet, M.A. (1954): Techniques for determination of pulp constituency by quantitative chromatography. TAPPI , 37 , 336–346.

    Millet M.A. , 'Techniques for determination of pulp constituency by quantitative chromatography ' (1954 ) 37 TAPPI : 336 -346.

    • Search Google Scholar
  • Seifert, K. (1983): Decay of wood by Dacrymycetales . Mycologia , 75 , 1011–1018.

    Seifert K. , 'Decay of wood by Dacrymycetales ' (1983 ) 75 Mycologia : 1011 -1018.

  • Singh, J. & Garg, A.P. (1996): Enzymatic hydrolysis of partially delignified Eichhornia , by Gliocladium virens . Acta bot. Indica , 24 , 67–71.

    Garg A.P. , 'Enzymatic hydrolysis of partially delignified Eichhornia, by Gliocladium virens ' (1996 ) 24 Acta bot. Indica : 67 -71.

    • Search Google Scholar
  • Szengyel, Z., Zacchi, G., Varga, A. & Reczey, K. (2000): Cellulase production of Trichoderma reesei Rut C-30 using steam pretreated spruce-hydrolytic potential of cellulases on different substrates. Appl. Biochem. Biotechnol. , 84 , 679–691.

    Reczey K. , 'Cellulase production of Trichoderma reesei Rut C-30 using steam pretreated spruce-hydrolytic potential of cellulases on different substrates ' (2000 ) 84 Appl. Biochem. Biotechnol. : 679 -691.

    • Search Google Scholar
  • Viikari, L., Tenkanen, M., Buchart, J., Ratto, M. & Linko, M. (1993): Hemicellulases for industrial applications.-in: Saddler, J.N. (Ed.) Bioconversion of forest and agricultural plant residues . C.A.B. International, Wallingford, England, pp. 131–182.

    Linko M. , '', in Bioconversion of forest and agricultural plant residues , (1993 ) -.

  • Zhenga, Y., Zhongi, P., Zhanga, R., Wangc, D., Labavitchd, J. & Jenkinsa, B.M. (2006): Dilute acid pretreatment and enzymatic hydrolysis of saline biomass for sugar production. ASAE Annual meeting . American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, Paper No. 067003.

    Jenkinsa B.M. , '', in ASAE Annual meeting , (2006 ) -.

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 1 0 0
Jun 2021 9 0 0
Jul 2021 9 0 0
Aug 2021 0 0 0