Author: F. Firtha 1
View More View Less
  • 1 Corvinus University of Budapest Physics-Control Department, Faculty of Food Science H-1118 Budapest Somlói út 14-16 Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Moisture-content is one of the most significant properties to determine quality of carrot during storage. The optical measurement methods of moisture content promise non-destructive, non-contact and fast solution for quality control, for monitoring quality changes during storage and also for real-time classification tasks.The high absorption coefficient of water makes NIR analysers a commonly used tool for accurate moisture analysis. Hyperspectral system is able to detect the spatial distribution of reflectance spectrum as well. In case of finding correlation between the moisture-content of carrot and the reflectance spectral data, a hyperspectral system would be suitable for testing quality.Experiments were made to investigate spectral changes of different cultivars and different tissues of carrot stored under different conditions. Moisture-decrease of pieces and also the spectral data of carrot slices were recorded. Statistical analysis of the data has shown the optimal intensity function to describe moisture-content. Eliminating homogeneous spectral changes caused by destructed tissues, only a narrow interval of NIR range was sensitive to the moisture-decrease of xylem tissues.The equipment and the measurement procedure were able to identify carrot tissues and detect their changes during drying. For non-destructive applications of the system, further experiments are needed to inspect the behaviour of rhizodermis.

  • Abu -Khalaf , N., Bennedsen , B.S. & Bjorn , G.K. (2004): Distinguishing carrot’s characteristics by near infrared (NIR) reflectance and multivariate data analysis. Agricultural Engng International: the CIGR Journal of Scientific Research and Development. Manuscript FP 03 012 6 , 1–17.

    Bjorn G.K. , 'Distinguishing carrot’s characteristics by near infrared (NIR) reflectance and multivariate data analysis ' (2004 ) 6 Agricultural Engng International: the CIGR Journal of Scientific Research and Development. Manuscript FP 03 012 : 1 -17.

    • Search Google Scholar
  • Belie , N.D., Pedersen , D.K., Martens , M., Bro , R., Munck , L. & Baerdemaeker , J.D. (2003): The use of visible and near-infrared reflectance measurements to assess sensory changes in carrot texture and sweetness during heat treatment. Biosyst. Engng , 85 , 213–225.

    Baerdemaeker J.D. , 'The use of visible and near-infrared reflectance measurements to assess sensory changes in carrot texture and sweetness during heat treatment ' (2003 ) 85 Biosyst. Engng : 213 -225.

    • Search Google Scholar
  • Champagne , C.M., Staenz , K., Bannari , A., Mcnairn , H. & Deguise , J-C. (2003): Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies. Remote Sensing Environment , 87 , 148–160.

    Deguise J.-C. , 'Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies ' (2003 ) 87 Remote Sensing Environment : 148 -160.

    • Search Google Scholar
  • Firtha , F., Fekete , A., Kaszab , T., Takacs , P., Herold , B., Herppich , W., Borsa , B. & Kovacs, L. (2006): Analysis of carrot drying by hyperspectral imaging. EurAgEng 2006, Bonn: Agricultural Engng for a Better World, poster no 926, fulltext No. 440119580699 . (ISBN 3-18-091958-2).

  • Hruschka , W.R. (1987): Data analysis: wavelength selection methods.-in: Williams , P.C. & Norris , K.H. (Eds) Near-infrared technology in the agricultural and food industries . American Association of Cereal Chemists, St. Paul, Minnesota, pp. 35–55.

    Hruschka W.R. , '', in Near-infrared technology in the agricultural and food industries , (1987 ) -.

  • Jung , A., Kardevan , P. & Tökei , L. (2006): Hyperspectral technology in vegetation analysis. Progr. agric. Engng Sci. , 2 , 95.117.

    Tökei L. , 'Hyperspectral technology in vegetation analysis ' (2006 ) 2 Progr. agric. Engng Sci. : 95.117 -.

    • Search Google Scholar
  • Kaffka , K.J., Horvath , L., Kulcsar , F. & Varadi , M. (1990): Investigation of the state of water in fibrous foodstuffs by near infrared spectroscopy. Acta Alimentaria , 19 , 125–137.

    Varadi M. , 'Investigation of the state of water in fibrous foodstuffs by near infrared spectroscopy ' (1990 ) 19 Acta Alimentaria : 125 -137.

    • Search Google Scholar
  • Korolev , A.V., Tomos , A.D., Bowtell , R. & Farrar , J.F. (2000): Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution. J. exp. Botany , 51 , 567–577.

    Farrar J.F. , 'Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution ' (2000 ) 51 J. exp. Botany : 567 -577.

    • Search Google Scholar
  • Lawrence , K.C., Park , B., Windham , W.R. & Mao , C. (2003): Calibration of a push broom hyperspectral imaging system for agricultural inspection. Trans. ASAE , 46 , 513–521.

    Mao C. , 'Calibration of a push broom hyperspectral imaging system for agricultural inspection ' (2003 ) 46 Trans. ASAE : 513 -521.

    • Search Google Scholar
  • Locsmandi , L., Kover , G., Bazar , G., Szabo , A. & Romvari , R. (2006): Development of a model using near-infrared reflectance spectroscopy for the determination of the chemical composition of fatty goose liver. Acta Alimentaria , 35 , 455–463.

    Romvari R. , 'Development of a model using near-infrared reflectance spectroscopy for the determination of the chemical composition of fatty goose liver ' (2006 ) 35 Acta Alimentaria : 455 -463.

    • Search Google Scholar
  • Mathsoft (1994): Mathcad reference guide . MathSoft Engng and Education Inc., Cambridge, MA, USA

    '', in Mathcad reference guide , (1994 ) -.

  • Meer , F. (2004): Analysis of spectral absorption features in hyperspectral imagery. Int. J. appl. Earth Obs. Geoinformation , 5 , 55–68.

    Meer F. , 'Analysis of spectral absorption features in hyperspectral imagery ' (2004 ) 5 Int. J. appl. Earth Obs. Geoinformation : 55 -68.

    • Search Google Scholar
  • Meer , F. (2006): The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. appl. Earth Obs. Geoinformation , 8 , 3–17.

    Meer F. , 'The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery ' (2006 ) 8 Int. J. appl. Earth Obs. Geoinformation : 3 -17.

    • Search Google Scholar
  • Nemethy , H. & Feher , M. (2002): Changes in the dry matter and sugar content of nantes type carrots during storage. Int. J. hortic. Sci. , 8 , 67–71.

    Feher M. , 'Changes in the dry matter and sugar content of nantes type carrots during storage ' (2002 ) 8 Int. J. hortic. Sci. : 67 -71.

    • Search Google Scholar
  • Ryan , M.J. & Arnold , J.A. (1997): Lossy compression of hyperspectral data using vector quantization. Remote Sensing Environment , 61 , 419–436.

    Arnold J.A. , 'Lossy compression of hyperspectral data using vector quantization ' (1997 ) 61 Remote Sensing Environment : 419 -436.

    • Search Google Scholar
  • Sebők , A., Bontovics , P. & Bleszkan , M. (1999): A kinetical approach of texture changes of vegetables during blanching. Acta Alimentaria , 28 , 279–290.

    Bleszkan M. , 'A kinetical approach of texture changes of vegetables during blanching ' (1999 ) 28 Acta Alimentaria : 279 -290.

    • Search Google Scholar
  • Tsai , F. & Philpot , W. (1998): Derivative analysis of hyperspectral data. Remote Sensing Environment , 66 , 41–51.

    Philpot W. , 'Derivative analysis of hyperspectral data ' (1998 ) 66 Remote Sensing Environment : 41 -51.

    • Search Google Scholar
  • Vranic , M., Knezevic , M., Seregely , ZS., Bosnjak , K., Leto , J. & Perculija , G. (2005): Prediction of dry matter and crude protein content in fresh grass silage by near infrared spectroscopy. Progr. agric. Engng Sci. , 1 , 57–75.

    Perculija G. , 'Prediction of dry matter and crude protein content in fresh grass silage by near infrared spectroscopy ' (2005 ) 1 Progr. agric. Engng Sci. : 57 -75.

    • Search Google Scholar
  • Warner , T.A. & Shank , M.C. (1997): Spatial autocorrelation analysis of hyperspectral imagery for feature selection. Remote Sensing Environment , 60 , 58–70.

    Shank M.C. , 'Spatial autocorrelation analysis of hyperspectral imagery for feature selection ' (1997 ) 60 Remote Sensing Environment : 58 -70.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 2 0 0
Apr 2021 2 0 0
May 2021 4 2 0
Jun 2021 7 0 0
Jul 2021 5 0 0
Aug 2021 0 0 0