View More View Less
  • 1 Corvinus University of Budapest Department of Food Engineering H-1118 Budapest Ménesi út 44 Hungary
  • | 2 Fitomark 94 Ltd H-3934 Tolcsva Arany János utca 16/a Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Concentration of raspberry (Rubus idaeus L.) juice by combination of membrane processes was investigated. The pre-treatment steps were crushing, enzyme treatment, pressing and clarification by microfiltration (MF). Ceramic tube MF membrane was used at low pressure and temperature (3.9 bar and 30 °C).Nanofiltration (NF) and reverse osmosis (RO) process with flatsheet membranes was studied to pre-concentrate the clarified and sterilized raspberry juice. The NF experiments were carried out at different flow-rates (400 l h−1 and 600 l h−1). Any significant effect of flow-rate was not experienced. Both pre-concentration processes were used at low temperature (30 °C) for a mild concentration of raspberry juice. For further concentration osmotic distillation (OD) was applied. The initial total soluble solid content of the raspberry juice was 8–10 °Brix, the final concentrate of OD was 70–80 °Brix.The membrane-, fouling- and the polarization layer resistance were determined in case of micro-, nanofiltration and reverse osmosis.The soft drinks, made from RO and OD concentrates, were compared with well-known conventional raspberry juice from trade. During the sensory analysis (the colour, odour, flavour, acid taste and general impression was evaluated) our juices were preferred by customers.The antioxidant capacity, total phenol, anthocyanin and acid content, the total cell count and the number of yeasts and moulds were determined in the permeate and retentate samples of the different filtration steps.

  • Banvolgyi, Sz., Kiss, I., Bekassy-Molnar, E. & Vatai, Gy. (2006): Concentration of red wine by nanofiltration. Desalination, 198, 8–15.

    Vatai Gy. , 'Concentration of red wine by nanofiltration ' (2006 ) 198 Desalination : 8 -15.

  • Benzie, F.F. & Strain, J.J. (1996): The ferric reducing ability of plasma (frap) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239, 70–76.

    Strain J.J. , 'The ferric reducing ability of plasma (frap) as a measure of “antioxidant power”: the FRAP assay ' (1996 ) 239 Anal. Biochem. : 70 -76.

    • Search Google Scholar
  • Carneiro, L., Santos Sa, D.I., Santos Gomes, D.F., Martins Matta, V. & Correa Cabral, L.M. (2002): Cold sterilization and clarification of pineapple juiceby tangential microfiltration. Desalination, 14, 93–98.

    Correa Cabral L.M. , 'Cold sterilization and clarification of pineapple juiceby tangential microfiltration ' (2002 ) 14 Desalination : 93 -98.

    • Search Google Scholar
  • Cassano, A., Marchio, M. & Drioli, E. (2007): Clarification of blood orange juice by ultrafiltration: analyses of operating parameters, membrane fouling and juice quality. Desalination, 212, 15–27.

    Drioli E. , 'Clarification of blood orange juice by ultrafiltration: analyses of operating parameters, membrane fouling and juice quality ' (2007 ) 212 Desalination : 15 -27.

    • Search Google Scholar
  • Castañeda-Ovando, A., Pacheco-Hernandez, Ma. deL., Paez-Hernandez, Ma.E., Rodriguez, J.A. & Galan-Vidal, C.A. (2009): Chemical studies of anthocyanins: A review. Fd Chem., 11, 859–871.

    Galan-Vidal C.A. , 'Chemical studies of anthocyanins: A review ' (2009 ) 11 Fd Chem. : 859 -871.

    • Search Google Scholar
  • Cevallos-Casals, B.A. & Cisneros-Zevallos, L. (2003): Stability of anthocyanin-based aqueos extracts of Andean purple corn and red-fleshed potato compared to synthetic and natural colorants. Fd Chem., 86, 69–77.

    Cisneros-Zevallos L. , 'Stability of anthocyanin-based aqueos extracts of Andean purple corn and red-fleshed potato compared to synthetic and natural colorants ' (2003 ) 86 Fd Chem. : 69 -77.

    • Search Google Scholar
  • Fillaudeau, L. & Carrère, H. (2002): Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes. J. Memb.. Sci., 196, 39–57.

    Carrère H. , 'Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes ' (2002 ) 196 J. Memb. Sci. : 39 -57.

    • Search Google Scholar
  • Gurak, P.D., Cabral, L.M.C., Rocha-Leăo, M.H.M., Matta, V.M. & Freitas, S.P. (2010): Quality evaluation of grape juice concentrated by reverse osmosis. J. Fd Engng, 96, 421–426.

    Freitas S.P. , 'Quality evaluation of grape juice concentrated by reverse osmosis ' (2010 ) 96 J. Fd Engng : 421 -426.

    • Search Google Scholar
  • Hea, Y., Ji, Z. & Li, S. (2007): Effective clarification of apple juice using membrane filtration without enzyme and pasteurization pretreatment. Sep. Purif. Tech., 57, 366–373.

    Li S. , 'Effective clarification of apple juice using membrane filtration without enzyme and pasteurization pretreatment ' (2007 ) 57 Sep. Purif. Tech. : 366 -373.

    • Search Google Scholar
  • Hu, X., Bekassy-Molnar, E. & Koris, A. (2004): Study of modelling transmembrane pressure and gel resistance in ultrafiltration of oily emulsion. Desalination, 163, 355–360.

    Koris A. , 'Study of modelling transmembrane pressure and gel resistance in ultrafiltration of oily emulsion ' (2004 ) 163 Desalination : 355 -360.

    • Search Google Scholar
  • ISO (1988): Sensory analysis — General guidance for the design of test rooms. No. 8589

  • Kókai, Z., Heszberger, J., Kollar-Hunek, K. & Kollfir, G. (2002): A new VBA software as a tool of food sensory test. Hung. J. Ind. Chem., 30, 235–239.

    Kollfir G. , 'A new VBA software as a tool of food sensory test ' (2002 ) 30 Hung. J. Ind. Chem. : 235 -239.

    • Search Google Scholar
  • López, F., Pescador, P., Güell, C., Morales, M.L., García-Parrilla, M.C. & Troncoso, A.M. (2005): Industrial vinegar clarification by cross-flow microfiltration: effect on colour and polyphenol content. J. Fd Engng, 68, 133–136.

    Troncoso A.M. , 'Industrial vinegar clarification by cross-flow microfiltration: effect on colour and polyphenol content ' (2005 ) 68 J. Fd Engng : 133 -136.

    • Search Google Scholar
  • Lugasi, A., Hóvári, J., Kádár, G. & Dénes, F. (2011): Phenolics in raspberry, blackberry and currant cultivars grown in Hungary. Acta Alimentaria, 40, 52–64.

    Dénes F. , 'Phenolics in raspberry, blackberry and currant cultivars grown in Hungary ' (2011 ) 40 Acta Alimentaria : 52 -64.

    • Search Google Scholar
  • MSZ3619-1983 (1983): Tartósított termékek összes savtartalmának meghatározása. (Determination of total acid content in processed foods. Hungarian Standard).

  • Nótin, B., Stéger-Máté, M., Juhász, R., Jakab, D., Monspart-Sényi, J. & Barta, J. (2011): Changes of phenolic compounds in black currant during vacuum drying process. Acta Alimentaria, 40, 120–129.

    Barta J. , 'Changes of phenolic compounds in black currant during vacuum drying process ' (2011 ) 40 Acta Alimentaria : 120 -129.

    • Search Google Scholar
  • Rektor, A. & Vatai, Gy. (2004): Membrane filtration of Mozzarella whey. Desalination, 162, 279–286.

    Vatai Gy. , 'Membrane filtration of Mozzarella whey ' (2004 ) 162 Desalination : 279 -286.

  • Rektor, A., Pap, N., Kókai, Z., Szabó, R., Vatai, Gy. & Békássy-Molnár, E. (2004): Application of membrane filtration methods for must processing and preservation. Desalination, 162, 271–277.

    Békássy-Molnár E. , 'Application of membrane filtration methods for must processing and preservation ' (2004 ) 162 Desalination : 271 -277.

    • Search Google Scholar
  • Singleton, V.L. & Rossi, J.A. (1965): Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. Soc. Enol. Vitic., 16, 144–158.

    Rossi J.A. , 'Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents ' (1965 ) 16 Am. Soc. Enol. Vitic. : 144 -158.

    • Search Google Scholar
  • Stopka, J., Bugan, S.G., Broussous, L., Schlosser, Š. & Larbot, A. (2001): Microfiltration of beer yeast suspensions through stamped ceramic membranes. Sep. Purif. Tech., 25, 535–543.

    Larbot A. , 'Microfiltration of beer yeast suspensions through stamped ceramic membranes ' (2001 ) 25 Sep. Purif. Tech. : 535 -543.

    • Search Google Scholar
  • Suthanthangjai, W., Kajda, P. & Zabetakis, I. (2005): The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Fd Chem., 90, 193–197.

    Zabetakis I. , 'The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus) ' (2005 ) 90 Fd Chem. : 193 -197.

    • Search Google Scholar
  • Szaniawski, A.R. & Spencer, H.G. (1997): Effects of immobilized pectinase on the microfiltration of dilute pectin solutions by macroporous titania membranes: resistance model interpretation. J. Memb. Sci., 127, 69–76.

    Spencer H.G. , 'Effects of immobilized pectinase on the microfiltration of dilute pectin solutions by macroporous titania membranes: resistance model interpretation ' (1997 ) 127 J. Memb. Sci. : 69 -76.

    • Search Google Scholar
  • Wang, S.Y., Chen, C.-T. & Wang, C.Y. (2009): The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Fd Chem., 112, 676–684.

    Wang C.Y. , 'The influence of light and maturity on fruit quality and flavonoid content of red raspberries ' (2009 ) 112 Fd Chem. : 676 -684.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 1 0 0
Apr 2021 4 0 0
May 2021 1 0 0
Jun 2021 1 0 0
Jul 2021 5 0 0
Aug 2021 0 0 0