View More View Less
  • 1 Poznan University of Life Sciences Department of Biochemistry and Food Analysis Mazowiecka Str. 48 60-623 Poznan Poland
  • | 2 Latvia State Institute of Fruit Growing Graudu Str. 1 LV-3701 Dobele Latvia
  • | 3 Poznan University of Life Sciences Department of Physics Wojska Polskiego Str. 38/42 60-637 Poznan Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The aim of the study was to reveal antioxidant synergism or antagonism between quercetin, rutin and selected tocotrienols in linoleic acid emulsion. The oxidative stress was generated by 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) or CuSO4; the increase of the concentration of peroxidation products was monitored using fluorescence probe 2,7-dichlorofluorescein (DCF). The antioxidant activity of tested substances depends on the form of the antioxidant (aglycone, glycoside), its concentration, localization in the emulsion, and the factors generating oxidative stress. The synergistic effect occurred when the effectiveness of individual antioxidant was relatively weak and mainly when the concentration of antioxidants was in the physiologically significant range of 1 μM. We suggest that tocotrienols were regenerated by flavonoids. The synergism benefitted from the proximity of the localization of interacting antioxidants (e.g. the presence of one of the antioxidants at the oil-water interface).

  • Afanas’ev, I.B., Ostrachovitch, E.A., Abramova, N.E. & Korkina, L.G. (1995): Different antioxidant activities of bioflavonoid rutin in normal and iron-overloaded rats. Biochem. Pharmacol., 50, 627–637.

    Korkina L.G. , 'Different antioxidant activities of bioflavonoid rutin in normal and iron-overloaded rats ' (1995 ) 50 Biochem. Pharmacol. : 627 -637.

    • Search Google Scholar
  • Aggarwal, B., Sundaram, C., Prasa, S. & Kannappan, R. (2010): Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol., 80, 1613–1631.

    Kannappan R. , 'Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases ' (2010 ) 80 Biochem. Pharmacol. : 1613 -1631.

    • Search Google Scholar
  • Becker, E.M., Ntouma, G. & Skibsted, L.H. (2007): Synergism and antagonism between quercetin and other chainbreaking antioxidants in lipid systems of increasing structural organisation. Fd Chem., 103, 1288–1296.

    Skibsted L.H. , 'Synergism and antagonism between quercetin and other chainbreaking antioxidants in lipid systems of increasing structural organisation ' (2007 ) 103 Fd Chem. : 1288 -1296.

    • Search Google Scholar
  • Coupland, J.N. & McClements, D.J. (1996): Lipid oxidation in food emulsion. Trends Fd Sci. Technol., 7(3), 83–91.

    McClements D.J. , 'Lipid oxidation in food emulsion ' (1996 ) 7 Trends Fd Sci. Technol. : 83 -91.

    • Search Google Scholar
  • Dinis, T.C.P., Madeira, V.M.C. & Almeida, L.M. (1994): Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and peroxyl radical scavengers. Arch. Biochem. Biophys., 315, 161–169.

    Almeida L.M. , 'Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and peroxyl radical scavengers ' (1994 ) 315 Arch. Biochem. Biophys. : 161 -169.

    • Search Google Scholar
  • Erlund, I., Silaste, M.L., Alfthan, G., Rantala, M., Kesaniemi, Y.A. & Aro, A. (2002): Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur. J. Clin. Nutr., 56, 891–898.

    Aro A. , 'Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables ' (2002 ) 56 Eur. J. Clin. Nutr. : 891 -898.

    • Search Google Scholar
  • Heim, K.E., Tagliaferro, A.R. & Bobilya, D.J. (2002): Flavonoid antioxidants: chemistry, metabolism and structureactivity relationships. J. Nutr. Biochem., 13, 572–584.

    Bobilya D.J. , 'Flavonoid antioxidants: chemistry, metabolism and structureactivity relationships ' (2002 ) 13 J. Nutr. Biochem. : 572 -584.

    • Search Google Scholar
  • Ho, H.M., Chen, R.Y., Leung, L.K., Chan, F.L., Huang, Y. & Chen, Z.Y. (2002): Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomedicine Pharmacother., 56, 289–295.

    Chen Z.Y. , 'Difference in flavonoid and isoflavone profile between soybean and soy leaf ' (2002 ) 56 Biomedicine Pharmacother. : 289 -295.

    • Search Google Scholar
  • Hwang, J., Sevenian, A., Hodis, H.N. & Ursini, F. (2000): Synergistic inhibition of LDL oxidation by phytoestrogens and ascorbic acid. Free Radical Biol. Medicine, 29 (1), 79–89.

    Ursini F. , 'Synergistic inhibition of LDL oxidation by phytoestrogens and ascorbic acid ' (2000 ) 29 Free Radical Biol. Medicine : 79 -89.

    • Search Google Scholar
  • Laguerre, M., Lecomte, J. & Villeneuve, P. (2007): Review: Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progr. Lipid Res., 46, 244–282.

    Villeneuve P. , 'Review: Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges ' (2007 ) 46 Progr. Lipid Res. : 244 -282.

    • Search Google Scholar
  • Manach, C., Williamson, G., Morand, C., Scalbert, A. & Remesy, C. (2005): Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 81, 230–242.

    Remesy C. , 'Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies ' (2005 ) 81 Am. J. Clin. Nutr. : 230 -242.

    • Search Google Scholar
  • Mancuso, J.R., McClements, D.J. & Decker, E.A. (1999): Ability of iron to promote surfactant peroxide decomposition and oxidize a-tocopherol. J. Agric. Fd Chem., 47, 4146–4149.

    Decker E.A. , 'Ability of iron to promote surfactant peroxide decomposition and oxidize a-tocopherol ' (1999 ) 47 J. Agric. Fd Chem. : 4146 -4149.

    • Search Google Scholar
  • Meyer, A.S., Heinonen, M. & Frankel, E.N. (1998): Antioxidant interactions of catechin, cyanidin, cafeic acid, quercetin, and ellagic acid on human LDL oxidation. Fd Chem., 61, 71–75.

    Frankel E.N. , 'Antioxidant interactions of catechin, cyanidin, cafeic acid, quercetin, and ellagic acid on human LDL oxidation ' (1998 ) 61 Fd Chem. : 71 -75.

    • Search Google Scholar
  • Min, D.B. & Smouse, T.H. (1985): Flavor chemistry of fats and oils. AOCS Press, Illinois, pp. 149–150.

    Smouse T.H. , '', in Flavor chemistry of fats and oils , (1985 ) -.

  • Mosca, M., Ceglie, A. & Ambrosone, L. (2008): Antioxidant dispersions in emulsified olive oils. Fd Res. Int., 41, 201–207.

    Ambrosone L. , 'Antioxidant dispersions in emulsified olive oils ' (2008 ) 41 Fd Res. Int. : 201 -207.

    • Search Google Scholar
  • Nogala-Kałucka, M., Kupczyk, B., Polewski, K., Siger, A. & Dwiecki, K. (2007): Influence of native antioxidants on the formation of fatty acid hydroperoxides in model systems. Eur. J. Lipid Sci. Technol., 109, 1028–1037.

    Dwiecki K. , 'Influence of native antioxidants on the formation of fatty acid hydroperoxides in model systems ' (2007 ) 109 Eur. J. Lipid Sci. Technol. : 1028 -1037.

    • Search Google Scholar
  • Peyrat-Maillard, M.N., Cuvelier, M.E. & Berset, C. (2003): Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects. J. Am. Oil Chem. Soc., 80, 1007–1012.

    Berset C. , 'Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects ' (2003 ) 80 J. Am. Oil Chem. Soc. : 1007 -1012.

    • Search Google Scholar
  • Ruiz-Larrea, M.B., Mohan, A.R., Paganga, G., Miller, N.J., Bolwell, G.P. & Rice-Evans, C.A. (1997): Antioxidant activity of phytoestrogenic isoflavones. Free Radical Res., 26, 63–70.

    Rice-Evans C.A. , 'Antioxidant activity of phytoestrogenic isoflavones ' (1997 ) 26 Free Radical Res. : 63 -70.

    • Search Google Scholar
  • Schroeder, M.T., Becker, E.M. & Skibsted, L.H. (2006): Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil. J. Agric. Fd Chem., 54, 3445–3453.

    Skibsted L.H. , 'Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil ' (2006 ) 54 J. Agric. Fd Chem. : 3445 -3453.

    • Search Google Scholar
  • Sen, C.K., Khanna, S. & Sashwati, R. (2007): Tocotrienols in health and disease: The other half of the natural vitamin E family. Molec. Aspects Medicine, 28, 692–728.

    Sashwati R. , 'Tocotrienols in health and disease: The other half of the natural vitamin E family ' (2007 ) 28 Molec. Aspects Medicine : 692 -728.

    • Search Google Scholar
  • Sigel, A. & Sigel, H. (1999): Metal ions in biological systems: interrelations between free radicals and metal ions in life processes, metal ions in biological systems. M. Dekker, Inc., New York, Basel, Hong Kong, pp. 36–37.

    Sigel H. , '', in Metal ions in biological systems: interrelations between free radicals and metal ions in life processes, metal ions in biological systems , (1999 ) -.

  • Soczyńska-Kordala, M., Bakowska, A., Oszmiański, J. & Gabrielska, J. (2001): Metal ion-flavonoid associations in bilayer phospholipid membranes. Cellul. Molec. Biol. Lett., 6, 277–281.

    Gabrielska J. , 'Metal ion-flavonoid associations in bilayer phospholipid membranes ' (2001 ) 6 Cellul. Molec. Biol. Lett. : 277 -281.

    • Search Google Scholar
  • Takahashi, R., Ohmori, R., Kiyose, C., Momiyama, Y., Ohsuzu, F. & Kondo, K. (2005): Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agric. Fd Chem., 53, 4578–4582.

    Kondo K. , 'Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation ' (2005 ) 53 J. Agric. Fd Chem. : 4578 -4582.

    • Search Google Scholar
  • Wang, CH., Prasaina, J.K. & Barnesa, S. (2002): Review of the methods used in the determination of phytoestrogens. J. Chromat. B., 777, 3–28.

    Barnesa S. , 'Review of the methods used in the determination of phytoestrogens ' (2002 ) 777 J. Chromat. B. : 3 -28.

    • Search Google Scholar
  • Watson, R.R. & Preedy, V.R. (2009): Tocotrienols. Vitamin E beyond tocopherols. CRC Press Taylor & Francis Group, Boca Raton, London, New York, pp. 8–9.

    Preedy V.R. , '', in Tocotrienols. Vitamin E beyond tocopherols , (2009 ) -.

  • Wheatley, R.A. (2000): Some recent trends in the analytical chemistry of lipid peroxidation. Trends Anal. Chem., 19, 617–628.

    Wheatley R.A. , 'Some recent trends in the analytical chemistry of lipid peroxidation ' (2000 ) 19 Trends Anal. Chem. : 617 -628.

    • Search Google Scholar
  • Zhao, H., Fan, W., Dong, J., Lu, J., Chen, J., Shan, L., Lin, Y. & Kong, W. (2008): Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Fd Chem., 107, 296–304.

    Kong W. , 'Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties ' (2008 ) 107 Fd Chem. : 296 -304.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 8 0 0
Feb 2021 10 0 0
Mar 2021 9 0 0
Apr 2021 3 0 0
May 2021 6 0 0
Jun 2021 2 0 0
Jul 2021 0 0 0