View More View Less
  • 1 Poznan University of Life Sciences Department of Biochemistry and Food Analysis Mazowiecka Str. 48 60-623 Poznan Poland
  • | 2 Latvia State Institute of Fruit Growing Graudu Str. 1 LV-3701 Dobele Latvia
  • | 3 Poznan University of Life Sciences Department of Physics Wojska Polskiego Str. 38/42 60-637 Poznan Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The aim of the study was to reveal antioxidant synergism or antagonism between quercetin, rutin and selected tocotrienols in linoleic acid emulsion. The oxidative stress was generated by 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) or CuSO4; the increase of the concentration of peroxidation products was monitored using fluorescence probe 2,7-dichlorofluorescein (DCF). The antioxidant activity of tested substances depends on the form of the antioxidant (aglycone, glycoside), its concentration, localization in the emulsion, and the factors generating oxidative stress. The synergistic effect occurred when the effectiveness of individual antioxidant was relatively weak and mainly when the concentration of antioxidants was in the physiologically significant range of 1 μM. We suggest that tocotrienols were regenerated by flavonoids. The synergism benefitted from the proximity of the localization of interacting antioxidants (e.g. the presence of one of the antioxidants at the oil-water interface).

  • Afanas’ev, I.B., Ostrachovitch, E.A., Abramova, N.E. & Korkina, L.G. (1995): Different antioxidant activities of bioflavonoid rutin in normal and iron-overloaded rats. Biochem. Pharmacol., 50, 627–637.

    Korkina L.G. , 'Different antioxidant activities of bioflavonoid rutin in normal and iron-overloaded rats ' (1995 ) 50 Biochem. Pharmacol. : 627 -637.

    • Search Google Scholar
  • Aggarwal, B., Sundaram, C., Prasa, S. & Kannappan, R. (2010): Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol., 80, 1613–1631.

    Kannappan R. , 'Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases ' (2010 ) 80 Biochem. Pharmacol. : 1613 -1631.

    • Search Google Scholar
  • Becker, E.M., Ntouma, G. & Skibsted, L.H. (2007): Synergism and antagonism between quercetin and other chainbreaking antioxidants in lipid systems of increasing structural organisation. Fd Chem., 103, 1288–1296.

    Skibsted L.H. , 'Synergism and antagonism between quercetin and other chainbreaking antioxidants in lipid systems of increasing structural organisation ' (2007 ) 103 Fd Chem. : 1288 -1296.

    • Search Google Scholar
  • Coupland, J.N. & McClements, D.J. (1996): Lipid oxidation in food emulsion. Trends Fd Sci. Technol., 7(3), 83–91.

    McClements D.J. , 'Lipid oxidation in food emulsion ' (1996 ) 7 Trends Fd Sci. Technol. : 83 -91.

    • Search Google Scholar
  • Dinis, T.C.P., Madeira, V.M.C. & Almeida, L.M. (1994): Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and peroxyl radical scavengers. Arch. Biochem. Biophys., 315, 161–169.

    Almeida L.M. , 'Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and peroxyl radical scavengers ' (1994 ) 315 Arch. Biochem. Biophys. : 161 -169.

    • Search Google Scholar
  • Erlund, I., Silaste, M.L., Alfthan, G., Rantala, M., Kesaniemi, Y.A. & Aro, A. (2002): Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur. J. Clin. Nutr., 56, 891–898.

    Aro A. , 'Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables ' (2002 ) 56 Eur. J. Clin. Nutr. : 891 -898.

    • Search Google Scholar
  • Heim, K.E., Tagliaferro, A.R. & Bobilya, D.J. (2002): Flavonoid antioxidants: chemistry, metabolism and structureactivity relationships. J. Nutr. Biochem., 13, 572–584.

    Bobilya D.J. , 'Flavonoid antioxidants: chemistry, metabolism and structureactivity relationships ' (2002 ) 13 J. Nutr. Biochem. : 572 -584.

    • Search Google Scholar
  • Ho, H.M., Chen, R.Y., Leung, L.K., Chan, F.L., Huang, Y. & Chen, Z.Y. (2002): Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomedicine Pharmacother., 56, 289–295.

    Chen Z.Y. , 'Difference in flavonoid and isoflavone profile between soybean and soy leaf ' (2002 ) 56 Biomedicine Pharmacother. : 289 -295.

    • Search Google Scholar
  • Hwang, J., Sevenian, A., Hodis, H.N. & Ursini, F. (2000): Synergistic inhibition of LDL oxidation by phytoestrogens and ascorbic acid. Free Radical Biol. Medicine, 29 (1), 79–89.

    Ursini F. , 'Synergistic inhibition of LDL oxidation by phytoestrogens and ascorbic acid ' (2000 ) 29 Free Radical Biol. Medicine : 79 -89.

    • Search Google Scholar
  • Laguerre, M., Lecomte, J. & Villeneuve, P. (2007): Review: Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progr. Lipid Res., 46, 244–282.

    Villeneuve P. , 'Review: Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges ' (2007 ) 46 Progr. Lipid Res. : 244 -282.

    • Search Google Scholar
  • Manach, C., Williamson, G., Morand, C., Scalbert, A. & Remesy, C. (2005): Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 81, 230–242.

    Remesy C. , 'Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies ' (2005 ) 81 Am. J. Clin. Nutr. : 230 -242.

    • Search Google Scholar
  • Mancuso, J.R., McClements, D.J. & Decker, E.A. (1999): Ability of iron to promote surfactant peroxide decomposition and oxidize a-tocopherol. J. Agric. Fd Chem., 47, 4146–4149.

    Decker E.A. , 'Ability of iron to promote surfactant peroxide decomposition and oxidize a-tocopherol ' (1999 ) 47 J. Agric. Fd Chem. : 4146 -4149.

    • Search Google Scholar
  • Meyer, A.S., Heinonen, M. & Frankel, E.N. (1998): Antioxidant interactions of catechin, cyanidin, cafeic acid, quercetin, and ellagic acid on human LDL oxidation. Fd Chem., 61, 71–75.

    Frankel E.N. , 'Antioxidant interactions of catechin, cyanidin, cafeic acid, quercetin, and ellagic acid on human LDL oxidation ' (1998 ) 61 Fd Chem. : 71 -75.

    • Search Google Scholar
  • Min, D.B. & Smouse, T.H. (1985): Flavor chemistry of fats and oils. AOCS Press, Illinois, pp. 149–150.

    Smouse T.H. , '', in Flavor chemistry of fats and oils , (1985 ) -.

  • Mosca, M., Ceglie, A. & Ambrosone, L. (2008): Antioxidant dispersions in emulsified olive oils. Fd Res. Int., 41, 201–207.

    Ambrosone L. , 'Antioxidant dispersions in emulsified olive oils ' (2008 ) 41 Fd Res. Int. : 201 -207.

    • Search Google Scholar
  • Nogala-Kałucka, M., Kupczyk, B., Polewski, K., Siger, A. & Dwiecki, K. (2007): Influence of native antioxidants on the formation of fatty acid hydroperoxides in model systems. Eur. J. Lipid Sci. Technol., 109, 1028–1037.

    Dwiecki K. , 'Influence of native antioxidants on the formation of fatty acid hydroperoxides in model systems ' (2007 ) 109 Eur. J. Lipid Sci. Technol. : 1028 -1037.

    • Search Google Scholar
  • Peyrat-Maillard, M.N., Cuvelier, M.E. & Berset, C. (2003): Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects. J. Am. Oil Chem. Soc., 80, 1007–1012.

    Berset C. , 'Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects ' (2003 ) 80 J. Am. Oil Chem. Soc. : 1007 -1012.

    • Search Google Scholar
  • Ruiz-Larrea, M.B., Mohan, A.R., Paganga, G., Miller, N.J., Bolwell, G.P. & Rice-Evans, C.A. (1997): Antioxidant activity of phytoestrogenic isoflavones. Free Radical Res., 26, 63–70.

    Rice-Evans C.A. , 'Antioxidant activity of phytoestrogenic isoflavones ' (1997 ) 26 Free Radical Res. : 63 -70.

    • Search Google Scholar
  • Schroeder, M.T., Becker, E.M. & Skibsted, L.H. (2006): Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil. J. Agric. Fd Chem., 54, 3445–3453.

    Skibsted L.H. , 'Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil ' (2006 ) 54 J. Agric. Fd Chem. : 3445 -3453.

    • Search Google Scholar
  • Sen, C.K., Khanna, S. & Sashwati, R. (2007): Tocotrienols in health and disease: The other half of the natural vitamin E family. Molec. Aspects Medicine, 28, 692–728.

    Sashwati R. , 'Tocotrienols in health and disease: The other half of the natural vitamin E family ' (2007 ) 28 Molec. Aspects Medicine : 692 -728.

    • Search Google Scholar
  • Sigel, A. & Sigel, H. (1999): Metal ions in biological systems: interrelations between free radicals and metal ions in life processes, metal ions in biological systems. M. Dekker, Inc., New York, Basel, Hong Kong, pp. 36–37.

    Sigel H. , '', in Metal ions in biological systems: interrelations between free radicals and metal ions in life processes, metal ions in biological systems , (1999 ) -.

  • Soczyńska-Kordala, M., Bakowska, A., Oszmiański, J. & Gabrielska, J. (2001): Metal ion-flavonoid associations in bilayer phospholipid membranes. Cellul. Molec. Biol. Lett., 6, 277–281.

    Gabrielska J. , 'Metal ion-flavonoid associations in bilayer phospholipid membranes ' (2001 ) 6 Cellul. Molec. Biol. Lett. : 277 -281.

    • Search Google Scholar
  • Takahashi, R., Ohmori, R., Kiyose, C., Momiyama, Y., Ohsuzu, F. & Kondo, K. (2005): Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agric. Fd Chem., 53, 4578–4582.

    Kondo K. , 'Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation ' (2005 ) 53 J. Agric. Fd Chem. : 4578 -4582.

    • Search Google Scholar
  • Wang, CH., Prasaina, J.K. & Barnesa, S. (2002): Review of the methods used in the determination of phytoestrogens. J. Chromat. B., 777, 3–28.

    Barnesa S. , 'Review of the methods used in the determination of phytoestrogens ' (2002 ) 777 J. Chromat. B. : 3 -28.

    • Search Google Scholar
  • Watson, R.R. & Preedy, V.R. (2009): Tocotrienols. Vitamin E beyond tocopherols. CRC Press Taylor & Francis Group, Boca Raton, London, New York, pp. 8–9.

    Preedy V.R. , '', in Tocotrienols. Vitamin E beyond tocopherols , (2009 ) -.

  • Wheatley, R.A. (2000): Some recent trends in the analytical chemistry of lipid peroxidation. Trends Anal. Chem., 19, 617–628.

    Wheatley R.A. , 'Some recent trends in the analytical chemistry of lipid peroxidation ' (2000 ) 19 Trends Anal. Chem. : 617 -628.

    • Search Google Scholar
  • Zhao, H., Fan, W., Dong, J., Lu, J., Chen, J., Shan, L., Lin, Y. & Kong, W. (2008): Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Fd Chem., 107, 296–304.

    Kong W. , 'Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties ' (2008 ) 107 Fd Chem. : 296 -304.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 10 0 0
Mar 2021 9 0 0
Apr 2021 3 0 0
May 2021 6 0 0
Jun 2021 4 0 0
Jul 2021 14 0 0
Aug 2021 0 0 0