View More View Less
  • 1 Corvinus University of Budapest Department of Physics and Control Budapest H-1118 Somlói út 14-16 Hungary
  • | 2 Fulda University of Applied Sciences Department of Food Technology Marquard straße 35 DE-36039 Fulda Germany
  • | 3 University of Szeged Department of Mechanical and Process Engineering, Faculty of Engineering H-6724 Moszkvai krt. 9 Szeged Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Time consuming and expensive methods have been applied for detection of coffee adulteration based on the literature. In the present work, an optical method (vision system) and the application of an electronic tongue is proposed to reveal the addition of barley in different proportion to coffee in ground and brewed forms. In a range of 1 to 80% (w/w) Robusta coffee was blended with roasted barley. Principal Component Analysis (PCA) accomplished on vision system image data showed a good discrimination of the adulterated samples. The results of Polar Qualification System (PQS) data reduction method revealed even small differences in the right barley content order by point method approach. With Partial Least Squares (PLS) regression the amount of barley in Robusta was predicted with high R2 (0.996) and relatively low RMSEP (∼2%) values in case of vision system data processing. Considering electronic tongue measurements, PCA results showed a good discrimination of samples with higher barley concentration. Misclassification was found in the low concentrated area by Lienar Discriminant Analgsis (LDA). To obtain an accurate model for barley content prediction in coffee, the most sensitive sensor signals were used to apply PLS regression successfully (R2=0.97, RMSEP=3.99% (w/w)).

  • Gonzalez, R.C. & Woods, R.E. (1992): Digital image processing. Addison-Wesley, Reading, MA.

    Woods R.E. , '', in Digital image processing , (1992 ) -.

  • Hernández, J.A., Heyd, B. & Trystram, G. (2008): On-line assessment of brightness and surface kinetics during coffee roasting. J. Food Eng., 87, 314–322.

    Trystram G. , 'On-line assessment of brightness and surface kinetics during coffee roasting ' (2008 ) 87 J. Food Eng. : 314 -322.

    • Search Google Scholar
  • Hill, T. & Lewicki, P. (2007): STATISTICS: Methods and applications. StatSoft, Tulsa.

    Lewicki P. , '', in STATISTICS: Methods and applications , (2007 ) -.

  • Hong, X., Wang, J. & Qiu, S. (2014): Authenticating cherry tomato juices — Discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Res. Int., 60, 173–179.

    Qiu S. , 'Authenticating cherry tomato juices — Discussion of different data standardization and fusion approaches based on electronic nose and tongue ' (2014 ) 60 Food Res. Int. : 173 -179.

    • Search Google Scholar
  • Jham, G.N., Winkler, J.H., Berhow, M.A. & Vaughn, S.F. (2007): γ-Tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn. J. Agr. Food Chem., 55, 5995–5999.

    Vaughn S.F. , 'γ-Tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn ' (2007 ) 55 J. Agr. Food Chem. : 5995 -5999.

    • Search Google Scholar
  • Kaffka, K.J. & Seregély, Zs. (2002): PQS (polar qualification system) the new data reduction and product qualification method. Acta Alimentaria, 31, 3–20.

    Seregély Z. , 'PQS (polar qualification system) the new data reduction and product qualification method ' (2002 ) 31 Acta Alimentaria : 3 -20.

    • Search Google Scholar
  • Kovács, Z., Dalmadi, I., Lukács, L. Sipos, L., Szántainé, K.K., Kókai, Z. & Fekete, A. (2010): Geographical origin identification of pure Sri Lanka tea infusions with electronic nose, electronic tongue and sensory profile analysis. J. Chemometr., 24, 121–130.

    Fekete A. , 'Geographical origin identification of pure Sri Lanka tea infusions with electronic nose, electronic tongue and sensory profile analysis ' (2010 ) 24 J. Chemometr. : 121 -130.

    • Search Google Scholar
  • Legin, A., Rudnitskaya, A., Vlasov, Y., Di Natale, C., Davide, F. & D’Amico, A. (1997): Tasting of beverages using an electronic tongue. Sensor. Actuat. B-Chem., 44, 291–296.

    D’Amico A. , 'Tasting of beverages using an electronic tongue ' (1997 ) 44 Sensor. Actuat. B-Chem. : 291 -296.

    • Search Google Scholar
  • Oliveira, R.C.S., Oliveira, L.S., Franca, A.S. & Augusti, R. (2009): Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. J. Food Comp. Anal., 22, 257–261.

    Augusti R. , 'Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley ' (2009 ) 22 J. Food Comp. Anal. : 257 -261.

    • Search Google Scholar
  • Parra, V., Arrieta, A.A., Fernández-Escudero, J.-A., Rodríguez-Méndez, M.L. & De Saja, J.A. (2006): Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sensor. Actuat., B-Chem., 118, 448–453.

    Saja J.A. , 'Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines ' (2006 ) 118 Sensor. Actuat., B-Chem. : 448 -453.

    • Search Google Scholar
  • Pizarro, C., Esteban-Díez, I. & González-Sáiz, J.M. (2007): Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Anal. Chim. Acta, 585, 266–276.

    González-Sáiz J.M. , 'Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy ' (2007 ) 585 Anal. Chim. Acta : 266 -276.

    • Search Google Scholar
  • Richards, E., Bessant, C. & Saini, S. (2002): Multivariate data analysis in electroanalytical chemistry. Electroanal., 14, 1533–1542.

    Saini S. , 'Multivariate data analysis in electroanalytical chemistry ' (2002 ) 14 Electroanal. : 1533 -1542.

    • Search Google Scholar
  • Sano, E.E., Assad, E.D. & Cunha, S.A.R. (2003): Quantifying adulteration in roast coffee powders by digital image processing. J. Food Quality, 26, 123–134.

    Cunha S.A.R. , 'Quantifying adulteration in roast coffee powders by digital image processing ' (2003 ) 26 J. Food Quality : 123 -134.

    • Search Google Scholar
  • Singhal, R.S., Kulkarni, P.R. & Rege, D.V. (1997): Handbook of indices of food quality and authenticity. Woodhead Publishing Ltd., Cambridge, 560 pages.

    Rege D.V. , '', in Handbook of indices of food quality and authenticity , (1997 ) -.

  • Soós, J., Kozits, S., Kovács, Z., Várvölgyi, E., Szöllosi, D. & Fekete, A. (2013): Application of electronic tongue to beverages. Acta Alimentaria, 42 (Suppl), 90–98.

    Fekete A. , 'Application of electronic tongue to beverages ' (2013 ) 42 Acta Alimentaria : 90 -98.

    • Search Google Scholar
  • Stój, A. (2011): Metody wykrywania zafalszowan win. (Methods of detecting adulteration of wines). Zywnosc. Nauka. Technologia. Jakosc, 18, 17–26.

    Stój A. , 'Metody wykrywania zafalszowan win. (Methods of detecting adulteration of wines) ' (2011 ) 18 Zywnosc. Nauka. Technologia. Jakosc : 17 -26.

    • Search Google Scholar
  • Toko, K. (1998): A taste sensor. Meas. Sci. Technol., 9, 1919–1936.

    Toko K. , 'A taste sensor ' (1998 ) 9 Meas. Sci. Technol. : 1919 -1936.

  • Várvölgyi, E., Kozits, Sz., Soós, J., Szöllosi, D., Kovács, Z. & Fekete, A. (2012): Application of electronic tongue for distinguishing coffee samples and predicting sensory attributes. Prog. Agric. Eng. Sci., 8, 49–63.

    Fekete A. , 'Application of electronic tongue for distinguishing coffee samples and predicting sensory attributes ' (2012 ) 8 Prog. Agric. Eng. Sci. : 49 -63.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 1 2 0
Jun 2021 2 0 0
Jul 2021 6 0 0
Aug 2021 6 0 0
Sep 2021 7 0 0
Oct 2021 4 0 0
Nov 2021 0 0 0