View More View Less
  • 1 University of Szeged Faculty of Engineering H-6725 Szeged Moszkvai út 9 Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Nowadays, the membrane filtration technique is a commonly used method for the separation of whey. The most significant limitation of membrane applications is fouling, which causes flux decline. During this work, regenerated cellulose membranes covered by TiO2-nanoparticles were investigated and applied to the separation of whey solution. Experiments were carried out in a dead-end ultrafiltration cell, and the changes in filtration parameters and the photocatalytic effects of the UV irradiated TiO2 modified membrane surface on the membrane fouling were examined. Our results showed that the water flux decreased with increasing TiO2 layer thickness, but the retention of turbidity and of COD increased. After separation, the membrane surface was cleaned by UV irradiation by means of photocatalytic oxidation. It was found that the original flux was recoverable, while the retention of the membrane decreased after cleaning.

  • Atra, R., Vatai, Gy., Bekassy-Molnar, E. & Balint, A. (2005): Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. J. Food Eng., 67, 325–332.

    Balint A. , 'Investigation of ultra- and nanofiltration for utilization of whey protein and lactose ' (2005 ) 67 J. Food Eng. : 325 -332.

    • Search Google Scholar
  • Banerjee, S. & De, A. (2012): An analytical solution of Sherwood number in a stirred continuous cell during steady state ultrafiltration. J. Membrane Sci., 389, 188–196.

    De A. , 'An analytical solution of Sherwood number in a stirred continuous cell during steady state ultrafiltration ' (2012 ) 389 J. Membrane Sci. : 188 -196.

    • Search Google Scholar
  • Cao, X.H., Ma, J., Shi, X.H. & Ren, Z.J. (2006): Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl. Surf. Sci. 253, 2003–2010.

    Ren Z.J. , 'Effect of TiO2 nanoparticle size on the performance of PVDF membrane ' (2006 ) 253 Appl. Surf. Sci. : 2003 -2010.

    • Search Google Scholar
  • Chai, X., Kobayashi, T. & Fujii, N. (1999): Ultrasound-associated cleaning of polymeric membranes for water treatment. Sep. Purif. Technol., 15, 139–146.

    Fujii N. , 'Ultrasound-associated cleaning of polymeric membranes for water treatment ' (1999 ) 15 Sep. Purif. Technol. : 139 -146.

    • Search Google Scholar
  • Chen, D., Weavers, K.L. & Walker W.H. (2006): Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics. Water Res., 40, 840–850.

    Walker W.H. , 'Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics ' (2006 ) 40 Water Res. : 840 -850.

    • Search Google Scholar
  • Ebert, K., Fritsch, D., Koll, J. & Tjahjawiguna, C. (2004): Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. J. Membrane Sci., 233, 71–78.

    Tjahjawiguna C. , 'Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes ' (2004 ) 233 J. Membrane Sci. : 71 -78.

    • Search Google Scholar
  • Horvath, E., Ribic, P.R., Hashemi, F., Forro, L. & Magrez, A. (2012): Dye metachromasy on titanate nanowires sensing humidity with reversible molecular dimerization. J. Mater. Chem., 22, 8778–8784.

    Magrez A. , 'Dye metachromasy on titanate nanowires sensing humidity with reversible molecular dimerization ' (2012 ) 22 J. Mater. Chem. : 8778 -8784.

    • Search Google Scholar
  • Hu, B. & Scott, K. (2008): Microfiltration of water in oil emulsions and evaluation of fouling mechanism. Chem. Eng. J., 136, 210–220.

    Scott K. , 'Microfiltration of water in oil emulsions and evaluation of fouling mechanism ' (2008 ) 136 Chem. Eng. J. : 210 -220.

    • Search Google Scholar
  • Kiss, Z.L., Kertész, S., Beszédes, S., Hodúr, C. & László, Z. (2013): Investigation of parameters affecting the ultrafiltration of oil-in-water emulsion wastewater. Desalin. Water Treat., DOI: 10.1080/19443994.2013.795323

    László Z. , '', in Desalin. Water Treat. , (2013 ) -.

  • Li, J.H., Xu, Y.Y., Zhu, L.P., Wang, J.H. & Du, C.H. (2009): Fabrication and characterisation of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membrane Sci., 326, 659–666.

    Du C.H. , 'Fabrication and characterisation of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance ' (2009 ) 326 J. Membrane Sci. : 659 -666.

    • Search Google Scholar
  • Luo, M., Wen, Q., Liu, J., Liu, H. & Jia, Z. (2011): Fabrication of SPES/Nano-TiO2 composite ultrafiltration membrane and its anti-fouling mechanism. Chinese J. Chem. Eng., 19, 45–51.

    Jia Z. , 'Fabrication of SPES/Nano-TiO2 composite ultrafiltration membrane and its anti-fouling mechanism ' (2011 ) 19 Chinese J. Chem. Eng. : 45 -51.

    • Search Google Scholar
  • Muthukumaran, S., Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G.W. & Grieser, F. (2004): The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Sep. Purif. Technol., 39, 99–107.

    Grieser F. , 'The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry ' (2004 ) 39 Sep. Purif. Technol. : 99 -107.

    • Search Google Scholar
  • Muthukumaran, S., Kentish, S., Lalchandani, S., Ashokkumar, M., Mawson R., Stevens, G.W. & Grieser, F. (2005): The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason. Sonochem., 12, 29–35.

    Grieser F. , 'The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes ' (2005 ) 12 Ultrason. Sonochem. : 29 -35.

    • Search Google Scholar
  • Tetreault, N., Horvath, E., Moehl, T., Brillet, J. & Smajda, R. (2010): High-efficiency solid-state dye-sensitized solar cells: Fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. ACS Nano, 4, 7644–7650.

    Smajda R. , 'High-efficiency solid-state dye-sensitized solar cells: Fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires ' (2010 ) 4 ACS Nano : 7644 -7650.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 4 0 0
Oct 2020 4 0 0
Nov 2020 7 2 0
Dec 2020 9 0 0
Jan 2021 4 2 0
Feb 2021 4 0 0
Mar 2021 0 0 0