View More View Less
  • 1 Corvinus University of Budapest Department of Food Engineering, Faculty of Food Science H-1118 Budapest Ménesi út 44 Hungary
  • | 2 Corvinus University of Budapest Department of Refrigeration and Livestocks’ Products Technology, Faculty of Food Science H-1118 Budapest Ménesi út 43-45 Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

In this study, pressed apricot (Prunus armeniaca L.) juice was concentrated using complex membrane technology with different module combinations: UF-RO-OD, UF-RO-MD, UF-NF-OD and UF-NF-MD. In case of the best combination a cross-flow polyethylene ultrafiltration membrane (UF) was applied for clarification, after which preconcentration was done using reverse osmosis (RO) with a polyamide membrane, and the final concentration was completed by osmotic distillation (OD) using a polypropylene module. The UF-RO-OD procedure resulted in a final concentrate with a 65-70 °Brix dry solid content and an excellent quality juice with high polyphenol content and high antioxidant capacity.Nanofiltration (NF) and membrane distillation (MD) were not proper economic solutions.The influence of certain operation parameters was examined experimentally. Temperatures of UF and RO were: 25, 30, and 35 °C, and of OD 25 °C. Recycle flow rates were: UF: 1, 1.5, and 2 m3 h−1; RO: 200, 400, and 600 l h−1; OD: 20, 30 and 40 l h−1. The flow rates in the module were expressed by the Reynolds number, as well. Based on preliminary experiments, the transmembrane pressures of UF and RO filtration were 4 bar and 50 bar, respectively. Each experimental run was performed three times. The following optimal operation parameters provided the lowest total cost: UF: 35 °C, 2 m3 h−1, 4 bar; RO: 35 °C, 600 l h−1, 50 bar; OD: 20, 30 and 40 l h−1; temperature 25 °C.In addition, experiments were performed for apricot juice concentration by evaporation, which technique is widely applied in the industry using vacuum and low temperature.For description the UF filtration, a dynamic model and regression by SPSS 14.0 statistics software were applied.

  • Aider, M. & De Halleux, D. (2008): Production of concentrated cherry and apricot juices by cryoconcentration technology. LWT-Food Sci. Technol., 41, 1768–1775.

    De Halleux D. , 'Production of concentrated cherry and apricot juices by cryoconcentration technology ' (2008 ) 41 LWT-Food Sci. Technol. : 1768 -1775.

    • Search Google Scholar
  • Ashurst, P.R. (2005): Chemistry and technology of soft drinks and fruit juices. Blackwell Publishing Ltd., pp. 52–54.

    Ashurst P.R. , '', in Chemistry and technology of soft drinks and fruit juices , (2005 ) -.

  • Banvolgyi, Sz., Horvath, Sz., Stefanovits-Banyai, E., Bekassy-Molnar, E. & Vatai, Gy. (2009): Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration. Desalination, 241, 281–287.

    Vatai Gy. , 'Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration ' (2009 ) 241 Desalination : 281 -287.

    • Search Google Scholar
  • Benzie, I.F. & Strain, J.J. (1999): Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 299, 15–27.

    Strain J.J. , 'Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration ' (1999 ) 299 Methods Enzymol. : 15 -27.

    • Search Google Scholar
  • Bureau, S., Ruiz, D., Reich, M., Gouble, B., Bertrand, D., Audergon, J-M. & Renard, C.M.G.C. (2009): Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem., 115, 1133–1140.

    Renard C.M.G.C. , 'Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit ' (2009 ) 115 Food Chem. : 1133 -1140.

    • Search Google Scholar
  • Cheryan, M. (1998): Ultrafiltration and microfiltration. handbook.. Technomic Publishing Company, USA, pp. 1–3.

    Cheryan M. , '', in Ultrafiltration and microfiltration. handbook , (1998 ) -.

  • Cissé, M., Vaillant, F., Bouquet, S., Pallet, D., Lutin, F., Reynes, M. & Dornier, M. (2011): Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality. Innov. Food Sci. Emerg., 12, 352–360.

    Dornier M. , 'Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality ' (2011 ) 12 Innov. Food Sci. Emerg. : 352 -360.

    • Search Google Scholar
  • Gomes, F.S., Costa, P.A., Campos, M.B.D., Tonon, R.V., Couri, S. & Cabral, L.M.C. (2013): Watermelon juice pretreatment with microfiltration process for obtaining lycopene. Int. J. Food Sci. Tech., 48, 601–608.

    Cabral L.M.C. , 'Watermelon juice pretreatment with microfiltration process for obtaining lycopene ' (2013 ) 48 Int. J. Food Sci. Tech. : 601 -608.

    • Search Google Scholar
  • He, Y., Ji, Z. & Li, S. (2007): Effective clarification of apple juice using membrane filtration without enzyme and pasteurization pretreatment. Sep. Purif. Technol., 57, 366–373.

    Li S. , 'Effective clarification of apple juice using membrane filtration without enzyme and pasteurization pretreatment ' (2007 ) 57 Sep. Purif. Technol. : 366 -373.

    • Search Google Scholar
  • Hasanoglu, A., Rebolledo, F., Plaza, A., Torres, A. & Romero, J. (2012): Effect of the operating variables on the extraction and recovery of aroma compounds in an osmotic distillation process coupled to a vacuum membrane distillation system. J. Food Eng., 111, 632–641.

    Romero J. , 'Effect of the operating variables on the extraction and recovery of aroma compounds in an osmotic distillation process coupled to a vacuum membrane distillation system ' (2012 ) 111 J. Food Eng. : 632 -641.

    • Search Google Scholar
  • Jaeger De Carvalho, L.M., Miranda De Castro, I. & Bento Da Silva, C.A. (2008): A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus L. Merril) by micro- and ultra-filtration. J. Food Eng., 87, 447–454.

    Bento Da Silva C.A. , 'A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus L. Merril) by micro- and ultra-filtration ' (2008 ) 87 J. Food Eng. : 447 -454.

    • Search Google Scholar
  • Kozák, Á., Bánvölgyi, Sz., Vincze, I., Kiss, I., Békássy-Molnár, E. & Vatai, Gy. (2007): Comparison of integrated large scale and laboratory scale membrane processes for the production of black currant juice concentrate. Chem. Eng. Process., 47, 1171–1177.

    Vatai Gy. , 'Comparison of integrated large scale and laboratory scale membrane processes for the production of black currant juice concentrate ' (2007 ) 47 Chem. Eng. Process. : 1171 -1177.

    • Search Google Scholar
  • Kujawski, W.; Sobolewska, A., Jarzynka, K., Guell, C., Ferrando, M. & Warczok, J. (2013): Application of osmotic membrane distillation process in red grape juice concentration. J. Food Eng., 116, 801–808.

    Warczok J. , 'Application of osmotic membrane distillation process in red grape juice concentration ' (2013 ) 116 J. Food Eng. : 801 -808.

    • Search Google Scholar
  • Molnar, Zs., Banvolgyi, Sz., Kozak, A., Kiss, I., Bekassy-Molnar, E. & Vatai, Gy. (2012): Concentration of raspberry (Rubus Idaeus L.) juice using membrane processes. Acta Alimentaria, 41, 147–159.

    Vatai Gy. , 'Concentration of raspberry (Rubus Idaeus L.) juice using membrane processes ' (2012 ) 41 Acta Alimentaria : 147 -159.

    • Search Google Scholar
  • Mulder, M. (1997): Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht, pp. 14–18.

    Mulder M. , '', in Basic principles of membrane technology , (1997 ) -.

  • Papavasileiou, V., Koulouris, A., Siletti, C. & Petrides, D. (2007): Optimize manufacturing of pharmaceutical products with process simulation and production scheduling tools. Chem. Eng. Res. Des., 85, 1086–1097.

    Petrides D. , 'Optimize manufacturing of pharmaceutical products with process simulation and production scheduling tools ' (2007 ) 85 Chem. Eng. Res. Des. : 1086 -1097.

    • Search Google Scholar
  • Rektor, A., Vatai, Gy. & Békássy-Molnár, E. (2006): Multi-step membrane processes for the concentration of grape juice. Desalination, 191, 446–453.

    Békássy-Molnár E. , 'Multi-step membrane processes for the concentration of grape juice ' (2006 ) 191 Desalination : 446 -453.

    • Search Google Scholar
  • Rektor, A., Kozák, Á., Vatai, Gy. & Békássy-Molnár, E. (2007): Pilot plant RO-filtration of grape juice. Sep. Purif. Technol., 57, 473–475.

    Békássy-Molnár E. , 'Pilot plant RO-filtration of grape juice ' (2007 ) 57 Sep. Purif. Technol. : 473 -475.

    • Search Google Scholar
  • Saracoglu, S., Tuzen, M. & Soylak, M. (2009): Evaluation of trace element contents of dried apricot samples from Turkey. J. Hazard. Mater., 167, 647–652.

    Soylak M. , 'Evaluation of trace element contents of dried apricot samples from Turkey ' (2009 ) 167 J. Hazard. Mater. : 647 -652.

    • Search Google Scholar
  • Singleton, V.L. & Rossi, J.A. (1965): Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144–158.

    Rossi J.A. , 'Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents ' (1965 ) 16 Am. J. Enol. Vitic. : 144 -158.

    • Search Google Scholar
  • Tasselli, F., Cassano, A. & Drioli, E. (2007): Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Sep. Purif. Technol., 57, 94–102.

    Drioli E. , 'Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes ' (2007 ) 57 Sep. Purif. Technol. : 94 -102.

    • Search Google Scholar
  • Versari, A., Parpinello, G.P., Mattioli A.U. & Galassi S. (2008): Characterisation of Italian commercial apricot juices by high-performance liquid chromatography analysis and multivariate analysis. Food Chem., 108, 334–340.

    Galassi S. , 'Characterisation of Italian commercial apricot juices by high-performance liquid chromatography analysis and multivariate analysis ' (2008 ) 108 Food Chem. : 334 -340.

    • Search Google Scholar
  • Vincze, I., Bányai-Stefanovits, É. & Vatai, Gy. (2006): Using nanofiltration and reverse osmosis for the concentration of sea buckthorn (Hippophae rhamnoides L.) juice. Desalination, 200, 528–530.

    Vatai Gy. , 'Using nanofiltration and reverse osmosis for the concentration of sea buckthorn (Hippophae rhamnoides L.) juice ' (2006 ) 200 Desalination : 528 -530.

    • Search Google Scholar
  • Vincze, I., Bányai-Stefanovits, É. & Vatai, Gy. (2007): Concentration of sea buckthorn (Hippophae rhamnoides L.) juice with membrane separation. Sep. Purif. Technol., 57, 455–460.

    Vatai Gy. , 'Concentration of sea buckthorn (Hippophae rhamnoides L.) juice with membrane separation ' (2007 ) 57 Sep. Purif. Technol. : 455 -460.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 13 0 0
Feb 2021 0 0 0
Mar 2021 1 0 0
Apr 2021 15 0 0
May 2021 4 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0