View More View Less
  • 1 University of Copenhagen Department of Food Science, Faculty of Science Rolighedsvej 26, Frederiksberg C 1958 Copenhagen Denmark
  • | 2 University of Copenhagen Department of Plant and Environmental Sciences, Faculty of Science Thorvaldsensvej 40, Frederiksberg C 1871 Copenhagen Denmark
  • | 3 University of Copenhagen Department of Nutrition, Exercise and Sports, Faculty of Science Rolighedsvej 26 1958 Frederiksberg C Denmark
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

There is an ever-increasing trend in advanced food analysis and foodomics to use more and more sophisticated analytical platforms that generate large and complex data structures, which in turn require more and more sophisticated data analysis tools for converting data into information. The choice of multivariate chemometric methods is primarily determined by the design of the study, type of the data, and the conclusions sought. In order to validate multivariate models, scientists are required to have basic chemometric knowledge and to be familiar with the variance structure of the investigated data. This review outlines some of the key aspects of applying common chemometric methods used within foodomics and provides selected examples of current applications. The review aims to provide simple insight into various multivariate methods and to illustrate pros and cons of unsupervised and supervised methods. The main analytical platforms used in foodomics are briefly discussed from the application point of view and the utilization of the generated data is illustrated. In addition, advanced data pre-processing tools, prior to multivariate analysis, are explained and relevant tools are demonstrated.

  • Abeysekara, S., Damiran, D. & Yu, P.Q. (2013): Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures. Spectrochim. Acta A., 102, 432–442.

    Yu P.Q. , 'Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures ' (2013 ) 102 Spectrochim. Acta A. : 432 -442.

    • Search Google Scholar
  • Acar, E., Gürdeniz, G., Rasmussen, M.A., Rago, D., Dragsted, L.O. & Bro, R. (2012): Coupled matrix factorization with sparse factors to identify potential biomarkers in metabolomics. Proceedings of the 2012 IEEE International Conference on Data Mining Workshops.

    Bro R. , '', in Proceedings of the 2012 IEEE International Conference on Data Mining Workshops , (2012 ) -.

  • Ahmed, F.E. (2002): Detection of genetically modified organisms in foods. Trends Biotechnol., 20, 215–223.

    Ahmed F.E. , 'Detection of genetically modified organisms in foods ' (2002 ) 20 Trends Biotechnol. : 215 -223.

    • Search Google Scholar
  • Amigo, J.M., Popielarz, M.J., Callejon, R.M., Morales, M.L., Troncoso, A.M., Petersen, M.A. & Toldamandersen, T.B. (2010A): Comprehensive analysis of chromatographic data by using PARAFAC2 and principal components analysis. J. Chromatogr. A, 1217, 4422–4429.

    Toldamandersen T.B. , 'Comprehensive analysis of chromatographic data by using PARAFAC2 and principal components analysis ' (2010 ) 1217 J. Chromatogr. A : 4422 -4429.

    • Search Google Scholar
  • Amigo, J.M., Skov, T. & Bro, R. (2010B): ChroMATHography: Solving chromatographic issues with mathematical models and intuitive graphics. Chem. Rev., 110, 4582–4605.

    Bro R. , 'ChroMATHography: Solving chromatographic issues with mathematical models and intuitive graphics ' (2010 ) 110 Chem. Rev. : 4582 -4605.

    • Search Google Scholar
  • Andersen, C.M. & Bro, R. (2010): Variable selection in regression-a tutorial. J. Chemometr., 24, 728–737.

    Bro R. , 'Variable selection in regression-a tutorial ' (2010 ) 24 J. Chemometr. : 728 -737.

  • Andersen, M.B., Rinnan, A., Manach, C., Poulsen, S.K., Pujos-Guillot, E., Larsen, T.M., Astrup, A. & Dragsted, L.O. (2014): Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J. Proteome Res., doi: 10.1021/pr400964s

    Dragsted L.O. , '', in J. Proteome Res. , (2014 ) -.

  • Anderssen, E., Dyrstad, K., Westad, F. & Martens, H. (2006):Reducing over-optimism in variable selection by cross-model validation. Chemometr. Intell. Lab., 84, 69–74.

    Martens H. , 'Reducing over-optimism in variable selection by cross-model validation ' (2006 ) 84 Chemometr. Intell. Lab. : 69 -74.

    • Search Google Scholar
  • Arvanitoyannis, A.S. & Tzouros, N.E. (2005): Implementation of quality control methods in conjunction with chemometrics toward authentication of dairy products. Crit. Rev. Food Sci. Nutr., 45, 231–249.

    Tzouros N.E. , 'Implementation of quality control methods in conjunction with chemometrics toward authentication of dairy products ' (2005 ) 45 Crit. Rev. Food Sci. Nutr. : 231 -249.

    • Search Google Scholar
  • Arvanitoyannis, I.S., Chalhoub, C., Gotsiou, P., Lydakis-Simantiris, N. & Kefalas, P. (2005A): Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Crit. Rev. Food Sci. Nutr., 45, 193-203.

  • Arvanitoyannis, I.S., Tsitsika, E.V. & Panagiotaki, P. (2005B): Implementation of quality control methods (physicochemical, microbiological, and sensory) in conjunction with multivariate analysis towards fish authenticity. Int. J. Food Sci. Tech., 40, 237–263.

    Panagiotaki P. , 'Implementation of quality control methods (physicochemical, microbiological, and sensory) in conjunction with multivariate analysis towards fish authenticity ' (2005 ) 40 Int. J. Food Sci. Tech. : 237 -263.

    • Search Google Scholar
  • Arvanitoyannis, I.S. & van Houwelingen-Koukaliaroglou, M. (2003): Implementation of chemometrics for quality control and authentication of meat and meat products. Crit. Rev. Food Sci. Nutr., 43, 173–218.

    van Houwelingen-Koukaliaroglou M. , 'Implementation of chemometrics for quality control and authentication of meat and meat products ' (2003 ) 43 Crit. Rev. Food Sci. Nutr. : 173 -218.

    • Search Google Scholar
  • Aursand, M., Standal, I.B. & Axelson, D.E. (2007): High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. J. Agr. Food Chem., 55, 38–47.

    Axelson D.E. , 'High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules ' (2007 ) 55 J. Agr. Food Chem. : 38 -47.

    • Search Google Scholar
  • Barnes, R.J., Dhanoa, M.S. & lister, S.J. (1989): Standard normal variate transformation and de-trending of nearinfrared diffuse reflectance spectra. Appl. Spectrosc., 43, 772–777.

    lister S.J. , 'Standard normal variate transformation and de-trending of nearinfrared diffuse reflectance spectra ' (1989 ) 43 Appl. Spectrosc. : 772 -777.

    • Search Google Scholar
  • Bassompierre, M., Tomasi, G., Munck, L., Bro, R. & Engelsen, S.B. (2007): Dioxin screening in fish product by pattern recognition of biomarkers. Chemosphere, 67, 28–35.

    Engelsen S.B. , 'Dioxin screening in fish product by pattern recognition of biomarkers ' (2007 ) 67 Chemosphere : 28 -35.

    • Search Google Scholar
  • Behrends, V., Tredwell, G.D. & Bundy, J.G. (2011): A software complement to AMDIS for processing GC-MS metabolomic data. Anal. Biochem., 415, 206–208.

    Bundy J.G. , 'A software complement to AMDIS for processing GC-MS metabolomic data ' (2011 ) 415 Anal. Biochem. : 206 -208.

    • Search Google Scholar
  • Berente, B., De la Calle García, D., Reichenbächer, M. & Danzer, K. (2000): Method development for the determination of anthocyanins in red wines by high-performance liquid chromatography and classification of German red wines by means of multivariate statistical methods. J. Chromatogr. A, 871, 95–103.

    Danzer K. , 'Method development for the determination of anthocyanins in red wines by high-performance liquid chromatography and classification of German red wines by means of multivariate statistical methods ' (2000 ) 871 J. Chromatogr. A : 95 -103.

    • Search Google Scholar
  • Berrueta, L.A., Alonso-Salces, R.M. & Heberger, K. (2007): Supervised pattern recognition in food analysis. J. Chromatogr. A, 1158, 196–214.

    Heberger K. , 'Supervised pattern recognition in food analysis ' (2007 ) 1158 J. Chromatogr. A : 196 -214.

    • Search Google Scholar
  • Bianchi, G., Giansante, L., Shaw, A. & Kell, D.B. (2001): Chemometric criteria for the characterisation of Italian Protected Denomination of Origin (DOP) olive oils from their metabolic profiles. Eur. J. Lipid Sci. Tech., 103, 141–150.

    Kell D.B. , 'Chemometric criteria for the characterisation of Italian Protected Denomination of Origin (DOP) olive oils from their metabolic profiles ' (2001 ) 103 Eur. J. Lipid Sci. Tech. : 141 -150.

    • Search Google Scholar
  • Bijlsma, S., Bobeldijk, L., Verheij, E.R., Ramaker, R., Kochhar, S., Macdonald, I.A., van Ommen, B. & Smilde, A.K. (2006): Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Anal. Chem., 78, 567–674.

    Smilde A.K. , 'Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation ' (2006 ) 78 Anal. Chem. : 567 -674.

    • Search Google Scholar
  • Botros, L.L., Jablonski, J., Chang, C., Bergana, M.M., Wehling, P., Harnly, J.M., Downey, G., Harrington, P., Potts, A.R. & Moore, J.C. (2013): Exploring authentic skim and nonfat dry milk powder variance for the development of nontargeted adulterant detection methods using near-infrared spectroscopy and chemometrics. J. Agr. Food Chem., 61, 9810–9818.

    Moore J.C. , 'Exploring authentic skim and nonfat dry milk powder variance for the development of nontargeted adulterant detection methods using near-infrared spectroscopy and chemometrics ' (2013 ) 61 J. Agr. Food Chem. : 9810 -9818.

    • Search Google Scholar
  • Bougeard, S., Qannari, E., Lupo, C. & Hanafi, M. (2011): From multiblock partial least squares to multiblock redundancy analysis. A continuum approach. Informatica, 22, 11–26.

    Hanafi M. , 'From multiblock partial least squares to multiblock redundancy analysis. A continuum approach ' (2011 ) 22 Informatica : 11 -26.

    • Search Google Scholar
  • Brereton, R.G. (2006): Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data. Trac-Trend. Anal. Chem., 25, 1103–1111.

    Brereton R.G. , 'Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data ' (2006 ) 25 Trac-Trend. Anal. Chem. : 1103 -1111.

    • Search Google Scholar
  • Bro, R. (1997): PARAFAC. Tutorial and applications. Chemometr. Intell. Lab., 38, 149–171.

    Bro R. , 'PARAFAC. Tutorial and applications ' (1997 ) 38 Chemometr. Intell. Lab. : 149 -171.

  • Bro, R., Andersson, C.A. & Kiers, H.A.L. (1999): PARAFAC2 — Part II. Modeling chromatographic data with retention time shifts. J. Chemometr., 13, 295–309.

    Kiers H.A.L. , 'PARAFAC2 — Part II. Modeling chromatographic data with retention time shifts ' (1999 ) 13 J. Chemometr. : 295 -309.

    • Search Google Scholar
  • Bylesjo, M., Eriksson, D., Kusano, M., Moritz, T. & Trygg, J. (2007): Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J., 52, 1181–1191.

    Trygg J. , 'Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data ' (2007 ) 52 Plant J. : 1181 -1191.

    • Search Google Scholar
  • Campbell, N.A. & Atchley, W.R. (1981): The geometry of Canonical Variate Analysis. Syst. Zool., 30, 268–280.

    Atchley W.R. , 'The geometry of Canonical Variate Analysis ' (1981 ) 30 Syst. Zool. : 268 -280.

    • Search Google Scholar
  • Capozzi, F. & Bordoni, A. (2013): Foodomics: a new comprehensive approach to food and nutrition. Genes Nutr., 8, 1–4.

    Bordoni A. , 'Foodomics: a new comprehensive approach to food and nutrition ' (2013 ) 8 Genes Nutr. : 1 -4.

    • Search Google Scholar
  • Castillo, S., Gopalacharyulu, P., Yetukuri, L. & Oresic, M. (2011): Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometr. Intell. Lab., 108, 23–32.

    Oresic M. , 'Algorithms and tools for the preprocessing of LC-MS metabolomics data ' (2011 ) 108 Chemometr. Intell. Lab. : 23 -32.

    • Search Google Scholar
  • Castro-Puyana, M., Garcia-Canas, V., Simo, C. & Cifuentes, A. (2012): Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis, 33, 147–167.

    Cifuentes A. , 'Recent advances in the application of capillary electromigration methods for food analysis and Foodomics ' (2012 ) 33 Electrophoresis : 147 -167.

    • Search Google Scholar
  • Cattell, R.B. (1943): The description of personality: Basic traits resolved into clusters. J. Abnorm. Soc. Psych., 38, 476–506.

    Cattell R.B. , 'The description of personality: Basic traits resolved into clusters ' (1943 ) 38 J. Abnorm. Soc. Psych. : 476 -506.

    • Search Google Scholar
  • Cifuentes, A. (2009): Food analysis and Foodomics Foreword. J. Chromatogr. A, 1216, 7109.

    Cifuentes A. , 'Food analysis and Foodomics Foreword ' (2009 ) 1216 J. Chromatogr. A : 7109 -.

    • Search Google Scholar
  • Cozzolino, D. (2014): An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Food Res. Int., 60, 262–265.

    Cozzolino D. , 'An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals ' (2014 ) 60 Food Res. Int. : 262 -265.

    • Search Google Scholar
  • de Juan, A. & Tauler, R. (2006): Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications. Crit. Rev. Anal. Chem., 36, 163–176.

    Tauler R. , 'Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications ' (2006 ) 36 Crit. Rev. Anal. Chem. : 163 -176.

    • Search Google Scholar
  • Delfino, I., Camerlingo, C., Portaccio, M., Ventura, B.D., Mita, L., Mita, D.G. & Lepore, M. (2011): Visible micro-Raman spectroscopy for determining glucose content in beverage industry. Food Chem., 127, 735–742.

    Lepore M. , 'Visible micro-Raman spectroscopy for determining glucose content in beverage industry ' (2011 ) 127 Food Chem. : 735 -742.

    • Search Google Scholar
  • Di Anibal, C.V., Callao, M.P. & Ruisanchez, I. (2011): H-1 NMR variable selection approaches for classification. A case study: The determination of adulterated foodstuffs. Talanta, 86, 316–323.

    Ruisanchez I. , 'H-1 NMR variable selection approaches for classification. A case study: The determination of adulterated foodstuffs ' (2011 ) 86 Talanta : 316 -323.

    • Search Google Scholar
  • Durante, C., Cocchi, M., Grandi, M., Marchetti, A. & Bro, R. (2006): Application of N-PLS to gas chromatographic and sensory data of traditional balsamic vinegars of modena. Chemometr. Intell. Lab., 83, 54–65.

    Bro R. , 'Application of N-PLS to gas chromatographic and sensory data of traditional balsamic vinegars of modena ' (2006 ) 83 Chemometr. Intell. Lab. : 54 -65.

    • Search Google Scholar
  • Engelsen, S.B., Savorani, F. & Rasmussen, M.A. (2013): Chemometric exploration of quantitative NMR data. eMagRes2, 267–278.

    Rasmussen M.A. , 'Chemometric exploration of quantitative NMR data ' (2013 ) 2 eMagRes : 267 -278.

    • Search Google Scholar
  • Erny, G.L., Elvira, C., San Roman, J. & Cifuentes, A. (2006): Capillary electrophoresis using copolymers of different composition as physical coatings: A comparative study. Electrophoresis, 27, 1041–1049.

    Cifuentes A. , 'Capillary electrophoresis using copolymers of different composition as physical coatings: A comparative study ' (2006 ) 27 Electrophoresis : 1041 -1049.

    • Search Google Scholar
  • Fabián, Z., Izvekov, V., Salgó, A. & Örsi, F. (1994): Near-infrared reflectance and Fourier transform infrared analysis of instant coffee mixtures. Anal. Proc., 31, 261–263.

    Örsi F. , 'Near-infrared reflectance and Fourier transform infrared analysis of instant coffee mixtures ' (1994 ) 31 Anal. Proc. : 261 -263.

    • Search Google Scholar
  • Feng, X.W., Zhang, Q.H. & Zhu, Z L. (2013): Rapid classification of citrus fruits based on raman spectroscopy and pattern recognition techniques. Food Sci. Technol. Res., 19, 1077–1084.

    Zhu Z. L. , 'Rapid classification of citrus fruits based on raman spectroscopy and pattern recognition techniques ' (2013 ) 19 Food Sci. Technol. Res. : 1077 -1084.

    • Search Google Scholar
  • Ferrari, E., Foca, G., Vignali, M., Tassi, L. & Ulrici, A. (2011): Adulteration of the anthocyanin content of red wines: Perspectives for authentication by Fourier Transform-Near InfraRed and 1H NMR spectroscopies. Anal. Chim. Acta, 701, 139–151.

    Ulrici A. , 'Adulteration of the anthocyanin content of red wines: Perspectives for authentication by Fourier Transform-Near InfraRed and 1H NMR spectroscopies ' (2011 ) 701 Anal. Chim. Acta : 139 -151.

    • Search Google Scholar
  • Forshed, J., Schuppe-Koistinen, I. & Jacobsson, S.P. (2003): Peak alignment of NMR signals by means of a genetic algorithm. Anal. Chim. Acta, 487, 189–199.

    Jacobsson S.P. , 'Peak alignment of NMR signals by means of a genetic algorithm ' (2003 ) 487 Anal. Chim. Acta : 189 -199.

    • Search Google Scholar
  • Frank, I.E. & Kowalski, B.R. (1984): Predictions of wine quality and geographic origin from chemical measurements by partial least-squares regression modeling. Anal. Chim. Acta, 162, 241–251.

    Kowalski B.R. , 'Predictions of wine quality and geographic origin from chemical measurements by partial least-squares regression modeling ' (1984 ) 162 Anal. Chim. Acta : 241 -251.

    • Search Google Scholar
  • Galtier, O., Abbas, O., Le Dreau, Y., Rebufa, C., Kister, J., Artaud, J. & Dupuy, N. (2011): Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions. Vibr. Spectrosc., 55, 132–140.

    Dupuy N. , 'Comparison of PLS1-DA, PLS2-DA and SIMCA for classification by origin of crude petroleum oils by MIR and virgin olive oils by NIR for different spectral regions ' (2011 ) 55 Vibr. Spectrosc. : 132 -140.

    • Search Google Scholar
  • Geladi, P., Macdougall, D. & Martens, H. (1985): Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc., 39, 491–500.

    Martens H. , 'Linearization and scatter-correction for near-infrared reflectance spectra of meat ' (1985 ) 39 Appl. Spectrosc. : 491 -500.

    • Search Google Scholar
  • Goodacre, R. (1997): Use of pyrolysis mass spectrometry with supervised learning for the assessment of the adulteration of milk of different species. Appl. Spectrosc., 51, 1144–1153.

    Goodacre R. , 'Use of pyrolysis mass spectrometry with supervised learning for the assessment of the adulteration of milk of different species ' (1997 ) 51 Appl. Spectrosc. : 1144 -1153.

    • Search Google Scholar
  • Gürdeniz, G., Hansen, L., Rasmussen, M.A., Acar, E., Olsen, A., Christensen, J., Barri, T., Tjonneland, A. & Dragsted, L.O. (2013): Patterns of time since last meal revealed by sparse PCA in an observational LC-MS based metabolomics study. Metabolomics, 9, 1073–1081.

    Dragsted L.O. , 'Patterns of time since last meal revealed by sparse PCA in an observational LC-MS based metabolomics study ' (2013 ) 9 Metabolomics : 1073 -1081.

    • Search Google Scholar
  • Gürdeniz, G., Kristensen, M., Skov, R. & Dragsted, L.O. (2012): The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites, 2, 77–99.

    Dragsted L.O. , 'The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats ' (2012 ) 2 Metabolites : 77 -99.

    • Search Google Scholar
  • Hantao, L.W., Aleme, H.G., Pedroso, M.P., Sabin, G.P., Poppi, R.J. & Augusto, F. (2012): Multivariate curve resolution combined with gas chromatography to enhance analytical separation in complex samples: A review. Anal. Chim. Acta, 731, 11–23.

    Augusto F. , 'Multivariate curve resolution combined with gas chromatography to enhance analytical separation in complex samples: A review ' (2012 ) 731 Anal. Chim. Acta : 11 -23.

    • Search Google Scholar
  • Harshman, R.A. (1970): Foundations of the PARAFAC procedure: Model and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Phonetics, 16.

    Harshman R.A. , '', in UCLA Working Papers in Phonetics , (1970 ) -.

  • Harshman, R.A. (1972): PARAFAC2: mathematical and technical notes. UCLA Working Papers in Phonetics, 22.

    Harshman R.A. , '', in UCLA Working Papers in Phonetics , (1972 ) -.

  • Hawkins, D.M., Bradu, D., Kass, G.V. & Galpin, J.S. (1983): Outlier detection using elemental sets in regression. S. Afr. Stat. J., 17, 184.

    Galpin J.S. , 'Outlier detection using elemental sets in regression ' (1983 ) 17 S. Afr. Stat. J. : 184 -.

    • Search Google Scholar
  • Hotelling, H. (1933): Analysis of a complex of statistical variables into principal components. J. Edduc. Psychiol., 24, 417–441.

    Hotelling H. , 'Analysis of a complex of statistical variables into principal components ' (1933 ) 24 J. Edduc. Psychiol. : 417 -441.

    • Search Google Scholar
  • Kamstrup-Nielsen, M.H., Johnsen, L.G. & Bro, R. (2013): Core consistency diagnostic in PARAFAC2. J. Chemometr., 27, 99–105.

    Bro R. , 'Core consistency diagnostic in PARAFAC2 ' (2013 ) 27 J. Chemometr. : 99 -105.

  • Karoui, R. & De Baerdemaeker, J. (2007): A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem., 102, 621–640.

    De Baerdemaeker J. , 'A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products ' (2007 ) 102 Food Chem. : 621 -640.

    • Search Google Scholar
  • Kasicka, V. (2012): Recent developments in CE and CEC of peptides (2009–2011): Electrophoresis, 33, 48–73.

    Kasicka V. , 'Recent developments in CE and CEC of peptides (2009–2011) ' (2012 ) 33 Electrophoresis : 48 -73.

    • Search Google Scholar
  • Kemsley, E.K. & Tapp, H.S. (2009): OPLS filtered data can be obtained directly from non-orthogonalized PLS1. J. Chemometr., 23, 263–264.

    Tapp H.S. , 'OPLS filtered data can be obtained directly from non-orthogonalized PLS1 ' (2009 ) 23 J. Chemometr. : 263 -264.

    • Search Google Scholar
  • Khakimov, B., Motawia, M.S., Bak, S. & Engelsen, S.B. (2013): The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography-mass spectrometry based metabolomics. Analy. Bioanal. Chem., 405, 9193–9205.

    Engelsen S.B. , 'The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography-mass spectrometry based metabolomics ' (2013 ) 405 Analy. Bioanal. Chem. : 9193 -9205.

    • Search Google Scholar
  • Khakimov, B., Amigo, J.M., Bak, S. & Engelsen, S.B. (2012): Plant metabolomics: Resolution and quantification of elusive peaks in liquid chromatography-mass spectrometry profiles of complex plant extracts using multi-way decomposition methods. J. Chromatogr. A, 1266, 84–94.

    Engelsen S.B. , 'Plant metabolomics: Resolution and quantification of elusive peaks in liquid chromatography-mass spectrometry profiles of complex plant extracts using multi-way decomposition methods ' (2012 ) 1266 J. Chromatogr. A : 84 -94.

    • Search Google Scholar
  • Khakimov, B., Bak, S. & Engelsen, S.B. (2014): High-throughput cereal metabolomics: Current analytical technologies, challenges and perspectives. J. Cereal Sci., 59, 393–418.

    Engelsen S.B. , 'High-throughput cereal metabolomics: Current analytical technologies, challenges and perspectives ' (2014 ) 59 J. Cereal Sci. : 393 -418.

    • Search Google Scholar
  • Kiers, H.A.L., Ten Berge, J.M.F. & Bro, R. (1999): PARAFAC2 — Part I. A direct fitting algorithm for the PARAFAC2 model. J. Chemometr., 13, 275–294.

    Bro R. , 'PARAFAC2 — Part I. A direct fitting algorithm for the PARAFAC2 model ' (1999 ) 13 J. Chemometr. : 275 -294.

    • Search Google Scholar
  • Kim, J.K., Park, S.Y., Lim, S.H., Yeo, Y., Cho, H.S. & Ha, S.H. (2013): Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci., 57, 14–20.

    Ha S.H. , 'Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites ' (2013 ) 57 J. Cereal Sci. : 14 -20.

    • Search Google Scholar
  • Kolch, W., Neususs, C., Peizing, M. & Mischak, H. (2005): Capillary electrophoresis — Mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom. Rev., 24, 959–977.

    Mischak H. , 'Capillary electrophoresis — Mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery ' (2005 ) 24 Mass Spectrom. Rev. : 959 -977.

    • Search Google Scholar
  • Kristensen, M., Savorani, F., Ravn-Haren, G., Poulsen, M., Markowski, J., Larsen, F.H., Dragsted, L.O. & Engelsen, S.B. (2010): NMR and interval PLS as reliable methods for determination of cholesterol in rodent lipoprotein fractions. Metabolomics, 6, 129–136.

    Engelsen S.B. , 'NMR and interval PLS as reliable methods for determination of cholesterol in rodent lipoprotein fractions ' (2010 ) 6 Metabolomics : 129 -136.

    • Search Google Scholar
  • Kuzina, V., Ekstrom, C.T., Andersen, S.B., Nielsen, J.K., Olsen, C.E. & Bak, S. (2009): Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol., 151, 1977–1990.

    Bak S. , 'Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach ' (2009 ) 151 Plant Physiol. : 1977 -1990.

    • Search Google Scholar
  • Larsen, F.H., van den Berg, F. & Engelsen, S.B. (2006): An exploratory chemometric study of H-1 NMR spectra of table wines. J. Chemometr., 20, 198–208.

    Engelsen S.B. , 'An exploratory chemometric study of H-1 NMR spectra of table wines ' (2006 ) 20 J. Chemometr. : 198 -208.

    • Search Google Scholar
  • Latorre, C.H., Crecente, R.M.P., Martin, S.G. & Garcia, J.B. (2013): A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication. Food Chem., 141, 3559–3565.

    Garcia J.B. , 'A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication ' (2013 ) 141 Food Chem. : 3559 -3565.

    • Search Google Scholar
  • Lawton, W.H. & Sylvestre, E.A. (1971): Self modeling curve resolution. Technometrics, 13, 617.

    Sylvestre E.A. , 'Self modeling curve resolution ' (1971 ) 13 Technometrics : 617 -.

  • Lindberg. W., Persson, J.A. & Wold, S. (1983): Partial least-squares methods for spectrofluorimetric analysis of mixtures of humic-acid and ligninsulfonate. Anal. Chem., 55, 643–648.

    Wold S. , 'Partial least-squares methods for spectrofluorimetric analysis of mixtures of humic-acid and ligninsulfonate ' (1983 ) 55 Anal. Chem. : 643 -648.

    • Search Google Scholar
  • Lindberg, W., Ohman, J., Wold, S. & Martens, H. (1985): Determination of the proteins in mixtures of meat, soymeal and rind from their chromatographic amino-acid patternby the partial least-squares method. Anal. Chim. Acta, 171, 1–11.

    Martens H. , 'Determination of the proteins in mixtures of meat, soymeal and rind from their chromatographic amino-acid patternby the partial least-squares method ' (1985 ) 171 Anal. Chim. Acta : 1 -11.

    • Search Google Scholar
  • Lommen, A. (2009): MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem., 81, 3079–3086.

    Lommen A. , 'MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing ' (2009 ) 81 Anal. Chem. : 3079 -3086.

    • Search Google Scholar
  • López, M.I., Trullols, E., Callao, M.P. & Ruisánchez, I. (2014): Multivariate screening in food adulteration: Untargeted versus targeted modelling. Food Chem., 147, 177–181.

    Ruisánchez I. , 'Multivariate screening in food adulteration: Untargeted versus targeted modelling ' (2014 ) 147 Food Chem. : 177 -181.

    • Search Google Scholar
  • Lopez-Rituerto, E., Savorani, F., Avenoza, A., Busto, J. H., Peregrina, J.M. & Engelsen, S.B. (2012): Investigations of La Rioja Terroir for wine production using H-1 NMR metabolomics. J. Agr. Food Chem., 60, 3452–3461.

    Engelsen S.B. , 'Investigations of La Rioja Terroir for wine production using H-1 NMR metabolomics ' (2012 ) 60 J. Agr. Food Chem. : 3452 -3461.

    • Search Google Scholar
  • MacNaughton, D., Rogers, L.B. & Wernimont, G. (1972): Principal-component analysis applied to chromatographic data. Anal. Chem., 44, 1421–1427.

    Wernimont G. , 'Principal-component analysis applied to chromatographic data ' (1972 ) 44 Anal. Chem. : 1421 -1427.

    • Search Google Scholar
  • Marini, F., D’Aloise, A., Bucci, R., Buiarelli, F., Magri, A.L. & Magri, A.D. (2011): Fast analysis of 4 phenolic acids in olive oil by HPLC-DAD and chemometrics. Chemometr. Intell. Lab., 106, 142–149.

    Magri A.D. , 'Fast analysis of 4 phenolic acids in olive oil by HPLC-DAD and chemometrics ' (2011 ) 106 Chemometr. Intell. Lab. : 142 -149.

    • Search Google Scholar
  • Martens, M., Martens, H. & Wold, S. (1983): Preference of cauliflower related to sensory descriptive variables by partial least-squares (PLS) regression. J. Sci. Food Agr., 34,715–724.

    Wold S. , 'Preference of cauliflower related to sensory descriptive variables by partial least-squares (PLS) regression ' (1983 ) 34 J. Sci. Food Agr. : 715 -724.

    • Search Google Scholar
  • Mas, S., De Juan, A., Tauler, R., Olivieri, A.C. & Escandar, G.M. (2010): Application of chemometric methods to environmental analysis of organic pollutants: A review. Talanta, 80, 1052–1067.

    Escandar G.M. , 'Application of chemometric methods to environmental analysis of organic pollutants: A review ' (2010 ) 80 Talanta : 1052 -1067.

    • Search Google Scholar
  • Mischak, H., Coon, J.J., Novak, J., Weissinger, E.M., Schanstra, J.P. & Dominiczak, A.F. (2009): Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: An update of recent developments. Mass Spectrom. Rev., 28, 703–724.

    Dominiczak A.F. , 'Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: An update of recent developments ' (2009 ) 28 Mass Spectrom. Rev. : 703 -724.

    • Search Google Scholar
  • Munck, L., Moller, B., Jacobsen, S. & Sondergaard, I. (2004): Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1→3,1→4)-beta-glucan in barley. J Cereal Sci., 40, 213–222.

    Sondergaard I. , 'Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1→3,1→4)-beta-glucan in barley ' (2004 ) 40 J Cereal Sci. : 213 -222.

    • Search Google Scholar
  • Munck, L., Norgaard, L., Engelsen, S.B., Bro, R. & Andersson, C.A. (1998): Chemometrics in food science — a demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemometr. Intell. Lab., 44, 31–60.

    Andersson C.A. , 'Chemometrics in food science — a demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance ' (1998 ) 44 Chemometr. Intell. Lab. : 31 -60.

    • Search Google Scholar
  • Nielsen, N.P.V., Carstensen, J.M. & Smedsgaard, J. (1998): Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J. Chromatogr. A., 805, 17–35.

    Smedsgaard J. , 'Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping ' (1998 ) 805 J. Chromatogr. A. : 17 -35.

    • Search Google Scholar
  • Nørgaard, L., Hahn, M.T., Knudsen, L.B., Farhat, I.A. & Engelsen, S.B. (2005): Multivariate near-infrared and Raman spectroscopic quantifications of the crystallinity of lactose in whey permeate powder. Int. Dairy J., 15, 1261–1270.

    Engelsen S.B. , 'Multivariate near-infrared and Raman spectroscopic quantifications of the crystallinity of lactose in whey permeate powder ' (2005 ) 15 Int. Dairy J. : 1261 -1270.

    • Search Google Scholar
  • Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J.P., Munck, L. & Engelsen, S B. (2000): Interval partial leastsquares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc., 54, 413–419.

    Engelsen S. B. , 'Interval partial leastsquares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy ' (2000 ) 54 Appl. Spectrosc. : 413 -419.

    • Search Google Scholar
  • Nørgaard, L., Bro, R., Westad, F. & Engelsen, S.B. (2006): A modification of canonical variates analysis to handle highly collinear multivariate data. J. Chemometr., 20, 425–435.

    Engelsen S.B. , 'A modification of canonical variates analysis to handle highly collinear multivariate data ' (2006 ) 20 J. Chemometr. : 425 -435.

    • Search Google Scholar
  • Oliveira, R.C.S., Oliveira, L.S., Franca, A.S. & Augusti, R. (2009): Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. J. Food Compos. Anal., 22, 257–261.

    Augusti R. , 'Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley ' (2009 ) 22 J. Food Compos. Anal. : 257 -261.

    • Search Google Scholar
  • Pearson, K. (1901): On lines and planes of closest fit to systems of points in space. Philos. Mag., 2, 7–12.

    Pearson K. , 'On lines and planes of closest fit to systems of points in space ' (1901 ) 2 Philos. Mag. : 7 -12.

    • Search Google Scholar
  • Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. (2010): MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. Bmc Bioinformatics, 11, 395.

    Oresic M. , 'MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data ' (2010 ) 11 Bmc Bioinformatics : 395 -.

    • Search Google Scholar
  • Rago, D., Mette, K., Gürdeniz, G., Marini, F., Poulsen, M. & Dragsted, L.O. (2013): A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome. Metabolomics, 9, 1202–1215.

    Dragsted L.O. , 'A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome ' (2013 ) 9 Metabolomics : 1202 -1215.

    • Search Google Scholar
  • Rajalahti, T., Arneberg, R., Berven, F.S., Myhr, K.M., Ulvik, R.J. & Kvalheim, O.M. (2009): Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemometr. Intell. Lab., 95, 35–48.

    Kvalheim O.M. , 'Biomarker discovery in mass spectral profiles by means of selectivity ratio plot ' (2009 ) 95 Chemometr. Intell. Lab. : 35 -48.

    • Search Google Scholar
  • Rasmussen, M.A. & Bro, R. (2012): A tutorial on the Lasso approach to sparse modeling. Chemometr. Intell. Lab., 119, 21–31.

    Bro R. , 'A tutorial on the Lasso approach to sparse modeling ' (2012 ) 119 Chemometr. Intell. Lab. : 21 -31.

    • Search Google Scholar
  • Rasmussen, G.T., Lowry, S.R. & Ritter, G.L. (1978): Principal component analysis of the infrared spectra of mixtures. Anal. Chim. Acta-Comp., 2, 213–221.

    Ritter G.L. , 'Principal component analysis of the infrared spectra of mixtures ' (1978 ) 2 Anal. Chim. Acta-Comp. : 213 -221.

    • Search Google Scholar
  • Rinnan, Å., van den Berg, F. & Engelsen, S.B. (2009): Review of the most common pre-processing techniques for near-infrared spectra. Trac-Trend. Anal. Chem., 28, 1201–1222.

    Engelsen S.B. , 'Review of the most common pre-processing techniques for near-infrared spectra ' (2009 ) 28 Trac-Trend. Anal. Chem. : 1201 -1222.

    • Search Google Scholar
  • Rinnan, Å., Andersson, M., Ridder, C. & Engelsen, S.B. (2014): Recursive weighted partial least squares (rPLS): an efficient variable selection method using PLS. J. Chemometr., 28, 439–447.

    Engelsen S.B. , 'Recursive weighted partial least squares (rPLS): an efficient variable selection method using PLS ' (2014 ) 28 J. Chemometr. : 439 -447.

    • Search Google Scholar
  • Ruiz-Samblás, C., Arrebola-Pascual, C., Tres, A., van Ruth, S. & Cuadros-Rodriguez, L. (2013): Authentication of geographical origin of palm oil by chromatographic fingerprinting of triacylglycerols and partial least square-discriminant analysis. Talanta, 116, 788–793.

    Cuadros-Rodriguez L. , 'Authentication of geographical origin of palm oil by chromatographic fingerprinting of triacylglycerols and partial least square-discriminant analysis ' (2013 ) 116 Talanta : 788 -793.

    • Search Google Scholar
  • Savorani, F., Kristensen, M., Larsen, F.H., Astrup, A. & Engelsen, S.B. (2010A): High throughput prediction of chylomicron triglycerides in human plasma by nuclear magnetic resonance and chemometrics. Nutr. Metab., 7, 43.

    Engelsen S.B. , 'High throughput prediction of chylomicron triglycerides in human plasma by nuclear magnetic resonance and chemometrics ' (2010 ) 7 Nutr. Metab. : 43 -.

    • Search Google Scholar
  • Savorani, F., Rasmussen, M.A., Mikkelsen, M.S. & Engelsen, S.B. (2013): A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Res. Int., DOI:10.1016/j.foodres.2012.12.025

    Engelsen S.B. , '', in Food Res. Int. , (2013 ) -.

  • Savorani, F., Tomasi, G. & Engelsen, S.B. (2010B): icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson., 202, 190–202.

    Engelsen S.B. , 'icoshift: A versatile tool for the rapid alignment of 1D NMR spectra ' (2010 ) 202 J. Magn. Reson. : 190 -202.

    • Search Google Scholar
  • Schlesier, K., Fauhl-Hassek, C., Forina, M., Cotea, V., Kocsi, E., Schoula, R., van Jaarsveld, F. & Wittkowski, R. (2009): Characterisation and determination of the geographical origin of wines. Part I: overview. Eur. Food Res. Technol., 230, 1–13.

    Wittkowski R. , 'Characterisation and determination of the geographical origin of wines. Part I: overview ' (2009 ) 230 Eur. Food Res. Technol. : 1 -13.

    • Search Google Scholar
  • Skov, T. & Engelsen, S.B. (2013): Chemometrics, mass spectra, and foodomics. -in: Cifuentes, A. (Ed.): Foodomics: Advanced mass spectrometry in modern food science and nutrition. John Wiley & Sons, Inc., Hoboken, N.J., pp. 507–538.

    Engelsen S.B. , '', in Foodomics: Advanced mass spectrometry in modern food science and nutrition , (2013 ) -.

  • Skov, T., Honoré, H.A., Jensen, H.M., Næs, T. & Engelsen, S.B. (2014): Chemometrics goes into foodomics. TRAC Trend. Anal. Chem., doi: 10.1016/j.trac.2014.05.004

    Engelsen S.B. , '', in TRAC Trend. Anal. Chem. , (2014 ) -.

  • Smilde, A.K., Jansen, J.J., Hoefsloot, H.C.J., Lamers, R.J.A.N., van der Greef, J. & Timmerman, M.E. (2005): ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. BMCBioinformatics, 21, 3043–3048.

    Timmerman M.E. , 'ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data ' (2005 ) 21 BMCBioinformatics : 3043 -3048.

    • Search Google Scholar
  • Smilde, A.K., Westerhuis, J.A. & de Jong, S. (2003): A framework for sequential multiblock component methods. J. Chemometr., 17, 323–337.

    de Jong S. , 'A framework for sequential multiblock component methods ' (2003 ) 17 J. Chemometr. : 323 -337.

    • Search Google Scholar
  • Smit, S., van Breemen, M.J., Hoefsloot, H.C.J., Smilde, A.K., Aerts, J.M.F.G. & de Koster, C.G. (2007): Assessing the statistical validity of proteomics based biomarkers. Anal. Chim. Acta, 592, 210–217.

    de Koster C.G. , 'Assessing the statistical validity of proteomics based biomarkers ' (2007 ) 592 Anal. Chim. Acta : 210 -217.

    • Search Google Scholar
  • Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R. & Siuzdak, G. (2006): XCMS: Processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Anal. Chem., 78, 779–787.

    Siuzdak G. , 'XCMS: Processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification ' (2006 ) 78 Anal. Chem. : 779 -787.

    • Search Google Scholar
  • Ståhle, L. & Wold, S. (1987): Partial least squares analysis with cross-validation for the two-class problem a Monte Carlo study. J. Chemometr., 1, 185–196.

    Wold S. , 'Partial least squares analysis with cross-validation for the two-class problem a Monte Carlo study ' (1987 ) 1 J. Chemometr. : 185 -196.

    • Search Google Scholar
  • Sysi-Aho, M., Katajamaa, M., Yetukuri, L. & Oresic, M. (2007): Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93.

    Oresic M. , 'Normalization method for metabolomics data using optimal selection of multiple internal standards ' (2007 ) 8 BMC Bioinformatics : 93 -.

    • Search Google Scholar
  • Stanimirova, I., Michalik, K., Drzazga, Z., Trzeciak, H., Wentzell, P.D. & Walczak, B. (2011): Interpretation of analysis of variance models using principal component analysis to assess the effect of a maternal anticancer treatment on the mineralization of rat bones. Anal. Chim. Acta, 689, 1–7.

    Walczak B. , 'Interpretation of analysis of variance models using principal component analysis to assess the effect of a maternal anticancer treatment on the mineralization of rat bones ' (2011 ) 689 Anal. Chim. Acta : 1 -7.

    • Search Google Scholar
  • Stein, S.E. (1999): An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectr., 10, 770–781.

    Stein S.E. , 'An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data ' (1999 ) 10 J. Am. Soc. Mass Spectr. : 770 -781.

    • Search Google Scholar
  • Sumner, L., Amberg, A., Barrett, D., Beale, M., Beger, R., Daykin, C., Fan, T., Fiehn, O., Goodacre, R., Griffin, J., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A., Lindon, J., Marriott, P., Nicholls, A., Reily, M., Thaden, J. & Viant, M. (2007): Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Viant M. , 'Proposed minimum reporting standards for chemical analysis ' (2007 ) 3 Metabolomics : 211 -221.

    • Search Google Scholar
  • Szymansnka, E., Saccenti, E., Smilde, A.K. & Westerhuis, J.A. (2012): Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8, S3–S16.

    Westerhuis J.A. , 'Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies ' (2012 ) 8 Metabolomics : S3 -S16.

    • Search Google Scholar
  • Taira, E., Ueno, M., Saengprachatanarug, K. & Kawamitsua, Y. (2013): Direct sugar content analysis for whole stalk sugarcane using a portable near infrared instrument. J. Near Infrared Spec., 21, 281–287.

    Kawamitsua Y. , 'Direct sugar content analysis for whole stalk sugarcane using a portable near infrared instrument ' (2013 ) 21 J. Near Infrared Spec. : 281 -287.

    • Search Google Scholar
  • Tautenhahn, R., Bottcher, C. & Neumann, S. (2008): Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504.

    Neumann S. , 'Highly sensitive feature detection for high resolution LC/MS ' (2008 ) 9 BMC Bioinformatics : 504 -.

    • Search Google Scholar
  • Tomasi, G., van den Berg, F. & Andersson, C. (2004): Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemometr., 18, 231–241.

    Andersson C. , 'Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data ' (2004 ) 18 J. Chemometr. : 231 -241.

    • Search Google Scholar
  • Tomasi, G., Savorani, F. & Engelsen, S.B. (2011): icoshift: An effective tool for the alignment of chromatographic data. J. Chromatogr. A, 1218, 7832–7840.

    Engelsen S.B. , 'icoshift: An effective tool for the alignment of chromatographic data ' (2011 ) 1218 J. Chromatogr. A : 7832 -7840.

    • Search Google Scholar
  • Trygg, J. & Wold, S. (2002): Orthogonal projections to latent structures (O-PLS). J. Chemometr., 16, 119–128.

    Wold S. , 'Orthogonal projections to latent structures (O-PLS) ' (2002 ) 16 J. Chemometr. : 119 -128.

    • Search Google Scholar
  • Uysal, R.S., Boyaci, I.H., Genis, H.E. & Tamer, U. (2013): Determination of butter adulteration with margarine using Raman spectroscopy. Food Chem., 141, 4397–4403.

    Tamer U. , 'Determination of butter adulteration with margarine using Raman spectroscopy ' (2013 ) 141 Food Chem. : 4397 -4403.

    • Search Google Scholar
  • Valdés, A., Simó, C., Ibánez, C. & García-Canas, V. (2013): Foodomics strategies for the analysis of transgenic foods. TRAC Trend. Anal. Chem., 52, 2–15.

    García-Canas V. , 'Foodomics strategies for the analysis of transgenic foods ' (2013 ) 52 TRAC Trend. Anal. Chem. : 2 -15.

    • Search Google Scholar
  • Valenti, B., Martin, B., Andueza, D., Leroux, C., Labonne, C., Lahalle, F., Larroque, H., Brunschwig, P., Lecomte, C., Brochard, M. & Ferlay, A. (2013): Infrared spectroscopic methods for the discrimination of cows’ milk according to the feeding system, cow breed and altitude of the dairy farm. Int. Dairy J., 32, 26–32.

    Ferlay A. , 'Infrared spectroscopic methods for the discrimination of cows’ milk according to the feeding system, cow breed and altitude of the dairy farm ' (2013 ) 32 Int. Dairy J. : 26 -32.

    • Search Google Scholar
  • van den Berg, F., Lyndgaard, C.B., Sorensen, K.M. & Engelsen, S.B. (2013): Process Analytical Technology in the food industry. Trends Food Sci. Tech., 31, 27–35.

    Engelsen S.B. , 'Process Analytical Technology in the food industry ' (2013 ) 31 Trends Food Sci. Tech. : 27 -35.

    • Search Google Scholar
  • van den Berg, R.A., Hoefsloot, H.C.J., Westerhuis, J.A., Smilde, A.K. & van der Werf, M.J. (2006): Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    van der Werf M.J. , 'Centering, scaling, and transformations: improving the biological information content of metabolomics data ' (2006 ) 7 BMC Genomics : 142 -.

    • Search Google Scholar
  • van Deun, K., van Mechelen, I., Thorrez, L., Schouteden, M., de Moor, B., van der Werf, M.T.J., de Lathauwer, L., Smilde, A.K. & Kiers, H.A.L. (2012): DISCO-SCA and properly applied GSVD as swinging methods to find common and distinctive processes. Plos One, 7, 5.

    Kiers H.A.L. , 'DISCO-SCA and properly applied GSVD as swinging methods to find common and distinctive processes ' (2012 ) 7 Plos One : 5 -.

    • Search Google Scholar
  • van Velzen, E.J.J., Westerhuis, J.A., van Duynhoven, J.P.M., van Dorsten, F.A., Hoefsloot, H.C.J., Jacobs, D.M., Smit, S., Draijer, R., Kroner, C.I. & Smilde, A.K. (2008): Multilevel data analysis of a crossover designed human nutritional intervention study. J. Proteome Res., 7, 4483–4491.

    Smilde A.K. , 'Multilevel data analysis of a crossover designed human nutritional intervention study ' (2008 ) 7 J. Proteome Res. : 4483 -4491.

    • Search Google Scholar
  • Veselkov, K.A., Lindon, J.C., Ebbels, T.M.D., Crockford, D., Volynkin, V.V., Holmes, E., Davies, D.B. & Nicholson, J.K. (2009): Recursive segment-wise peak alignment of biological H-1 NMR spectra for improved metabolic biomarker recovery. Anal. Chem., 81, 56–66.

    Nicholson J.K. , 'Recursive segment-wise peak alignment of biological H-1 NMR spectra for improved metabolic biomarker recovery ' (2009 ) 81 Anal. Chem. : 56 -66.

    • Search Google Scholar
  • Vogels, J.T. W.E., Tas, A.C., Venekamp, J. & Vandergreef, J. (1996): Partial linear fit: A new NMR spectroscopy preprocessing tool for pattern recognition applications. J. Chemometr., 10, 425–438.

    Vandergreef J. , 'Partial linear fit: A new NMR spectroscopy preprocessing tool for pattern recognition applications ' (1996 ) 10 J. Chemometr. : 425 -438.

    • Search Google Scholar
  • Westerhuis, J.A., Kourti, T. & MacGregor, J.F. (1998): Analysis of multiblock and hierarchical PCA and PLS models. J. Chemometr., 12, 301–321.

    MacGregor J.F. , 'Analysis of multiblock and hierarchical PCA and PLS models ' (1998 ) 12 J. Chemometr. : 301 -321.

    • Search Google Scholar
  • Westerhuis, J.A., Hoefsloot, H.C.J., Smit, S., Vis, D.J., Smilde, A.K., van Velzen, E.J.J., van Duijnhoven, J.P.M. & van Dorsten, F.A. (2008): Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.

    van Dorsten F.A. , 'Assessment of PLSDA cross validation ' (2008 ) 4 Metabolomics : 81 -89.

  • Willson, K.C. & Freeman, G.H. (1970): Use of principal component analysis on data from chemical analysis of tea leaves. Exp. Agr., 6(4), 319–325.

    Freeman G.H. , 'Use of principal component analysis on data from chemical analysis of tea leaves ' (1970 ) 6 Exp. Agr. : 319 -325.

    • Search Google Scholar
  • Winning, H., Roldan-Marin, E., Dragsted, L.O., Viereck, N., Poulsen, M., Sanchez-Moreno, C., Cano, M.P. & Engelsen, S.B. (2009): An exploratory NMR nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake. Analyst, 134, 2344–2351.

    Engelsen S.B. , 'An exploratory NMR nutri-metabonomic investigation reveals dimethyl sulfone as a dietary biomarker for onion intake ' (2009 ) 134 Analyst : 2344 -2351.

    • Search Google Scholar
  • Witten, D.M., Tibshirani, R. & Hastie, T. (2009): A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10, 515–534.

    Hastie T. , 'A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis ' (2009 ) 10 Biostatistics : 515 -534.

    • Search Google Scholar
  • Wold, H. (1975): Quantitative sociology: Intentional perspective on mathematical and statistical modeling. -in: Blalock, H.M, Aganbegian, A, Borodkin, F.M., Boudon, R., Capecchi, V. (Eds). Quantitative sociology: Intentional perspective on mathematical and statistical modeling. Academic Press, New York, pp. 307–357.

    Wold H. , '', in Quantitative sociology: Intentional perspective on mathematical and statistical modeling , (1975 ) -.

  • Wold, H. (1980): Model construction and evaluation when theoretical knowledge is scarce. Theory and application of partial least squares. -in: Kmenta, J. & Ramsey, J.B. (Eds) Evaluation of econometric models. Academic Press, New York, pp. 47–74.

    Wold H. , '', in Evaluation of econometric models , (1980 ) -.

  • Wold. S., Martens, H. & Wold, H. (1983): The multivariate calibration-problem in chemistry solved by the PLS method. Lect. Notes Math., 973, 286–293.

    Wold H. , 'The multivariate calibration-problem in chemistry solved by the PLS method ' (1983 ) 973 Lect. Notes Math. : 286 -293.

    • Search Google Scholar
  • Wold, S., Esbensen, K. & Geladi, P. (1987): Principal Component Analysis. Chemometr. Intell. Lab., 2, 37–52.

    Geladi P. , 'Principal Component Analysis ' (1987 ) 2 Chemometr. Intell. Lab. : 37 -52.

  • Wold, S., Kettaneh, N. & Tjessem, K. (1996): Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection. J. Chemometr., 10, 463–482.

    Tjessem K. , 'Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection ' (1996 ) 10 J. Chemometr. : 463 -482.

    • Search Google Scholar
  • Wold, S., Sjöström, M. & Eriksson, L. (2001): PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab., 58, 109–130.

    Eriksson L. , 'PLS-regression: a basic tool of chemometrics ' (2001 ) 58 Chemometr. Intell. Lab. : 109 -130.

    • Search Google Scholar
  • Wold, S. & Sjöström, M. (1977): Chemometrics: Theory and application, 52th ed., American Chemical Society, pp. 243–282.

    Sjöström M. , '', in Chemometrics: Theory and application , (1977 ) -.

  • Xie, L.J., Ying, Y.B., Ying, T.J., Yu, H.Y. & Fu, X.P. (2007): Discrimination of transgenic tomatoes based on visible/near-infrared spectra. Anal. Chim. Acta, 584, 379–384.

    Fu X.P. , 'Discrimination of transgenic tomatoes based on visible/near-infrared spectra ' (2007 ) 584 Anal. Chim. Acta : 379 -384.

    • Search Google Scholar
  • Zafra-Gomez, A., Luzon-Toro, B., Jimenez-Diaz, I., Ballesteros, O. & Navalon, A. (2010): Quantification of phenolic antioxidants in rat cerebrospinal fluid by GC-MS after oral administration of compounds. J. Pharmaceut. Biomed., 53, 103–108.

    Navalon A. , 'Quantification of phenolic antioxidants in rat cerebrospinal fluid by GC-MS after oral administration of compounds ' (2010 ) 53 J. Pharmaceut. Biomed. : 103 -108.

    • Search Google Scholar
  • Zhao, M., Downey, G. & O’Donnell, C.P. (2014): Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis. Meat Sci., 96, 1003–1011.

    O’Donnell C.P. , 'Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis ' (2014 ) 96 Meat Sci. : 1003 -1011.

    • Search Google Scholar
  • Zou, H., Hastie, T. & Tibshirani, R. (2006): Sparse principal component analysis. J. Comput. Graph. Stat., 15, 265–286.

    Tibshirani R. , 'Sparse principal component analysis ' (2006 ) 15 J. Comput. Graph. Stat. : 265 -286.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 40 2 2
Jul 2021 6 0 0
Aug 2021 25 0 0
Sep 2021 13 0 0
Oct 2021 18 0 0
Nov 2021 21 0 0
Dec 2021 21 0 0