View More View Less
  • 1 Kyungpook National University, 702-701 Daegu, South Korea
  • | 2 Nongshim Co. Ltd., , 156-709 Seoul, South Korea
  • | 3 University of Sargodha, 40100 Sargodha, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

This study was aimed at evaluating the efficacy of different mineral separation procedures to validate the EN1788 (2001) European Union standard protocol for better identification of irradiated fish and shellfish. The silicate minerals were isolated with physical density separation method from two types of non-irradiated freeze-dried fish and shellfish that included Pacific saury (Cololabis saira), mackerel (Scomber japonicus), shrimp (Penaeidae metapenaeus), and mussel (Mytilus coruscus). Radiation-specific thermoluminescence (TL) peaks (glow curve 1) were observed between 150–250 °C. The peaks are typical for the irradiated food; despite the samples being not irradiated. Apparently it showed that the isolated minerals were contaminated with organic materials such as bone, etc. Acid-hydrolysis digestion was employed to remove the possible contaminants. The minerals obtained through alternative pre-treatment showed no TL curves in radiation specific temperature range. Moreover, acid hydrolysis extraction resulted in producing higher mineral yields and lower background luminescence. Results were also confirmed by calculating TL ratios (glow curve 1/glow curve 2) to confirm the irradiation history of samples. Furthermore, different time and temperature treatments on TL intensity of irradiated standard quartz (SiO2) minerals showed that the acid-hydrolysis can be adjusted to 50 °C and 3 h for better luminescence determinations.

  • AHN, J.J., AKRAM, K., JEONG, M.S., KWAK, J.Y. & KWON, J.H. (2013): Identification of irradiated shellfish using wellcharacterized thermoluminescence properties of biogenic minerals present in the exoskeleton. Food Anal.Methods, 6 13451352.

    • Search Google Scholar
    • Export Citation
  • AHN, J.J., AKRAM, K., JEONG, M.S., KWAK, J.Y., JANG, Y.D. & KWON, J.H. (2012): Radiation-induced thermoluminescence characteristics of feldspar following different heat and microwave treatments. J. Lumin., 132, 19641968.

    • Search Google Scholar
    • Export Citation
  • AUTIO, T. & PINNIOJA, S. (1990): Identification of irradiated foods by thermoluminescence of the contaminating minerals. Eur. Food Res. Technol., 191, 177180.

    • Search Google Scholar
    • Export Citation
  • BELLAGHA, S., AMAMI, E., FARHAT, A. & KECHAOU, N. (2002): Drying kinetics and characteristic drying curve of lightly salted Sardine (Sardinella aurita). Dry Technol., 20, 15271538.

    • Search Google Scholar
    • Export Citation
  • CARMICHAEL, L.A., SANDERSON, D.C.W. & NI RIAIN, S. (1994): Thermoluminescence measurement of calcite shells. Radiat. Meas., 23, 455463.

    • Search Google Scholar
    • Export Citation
  • CARMICHAEL, L.A. & SANDERSON, D.C.W. (2000): The use of acid hydrolysis for extracting minerals from shellfish for thermoluminescence detection of irradiation. Food Chem., 68, 233238.

    • Search Google Scholar
    • Export Citation
  • CHAUHAN, S.K., KUMAR, R., NADANASABAPATHY, S. & BAWA, A.S. (2009): Detection methods for irradiated foods. Compr. Rev. Food Sci. F., 8, 416.

    • Search Google Scholar
    • Export Citation
  • CHEN, S., MORITA, Y., SAITO, K., KAMEYA, H., NAKAJIMA, M. & TODORIKI, S.J. (2011): Identification of irradiated prawn (Penaeus monodon) using thermoluminescence and 2-alkylcyclobutanone analyses. J. Agric. FoodChem., 59, 7884.

    • Search Google Scholar
    • Export Citation
  • CRUZ-ZARAGOZA, E., MARCAZZÓ, J., MONACA, S.D., BONIGLIA, C., GARGIULO, R. & BORTOLIN, E. (2012): Thermoluminescence analysis of irradiated oyster shells. Appl. Radiat. Isotopes, 71 1822.

    • Search Google Scholar
    • Export Citation
  • DARVISHI, H., AZADBAKHT, M., REZAEIASL, A. & FARHANG, A. (2012): Drying characteristics of sardine fish dried with microwave heating. J. Saudi Soc. Agric. Sci., 12, 121127.

    • Search Google Scholar
    • Export Citation
  • D’OCA, M.C. & BARTOLOTTA, A. (2010): The identification of irradiated crustaceans and evaluation of the dose by thermoluminescence: Intercomparison between two methods for extracting minerals. Food Res. Int., 43, 12551259.

    • Search Google Scholar
    • Export Citation
  • DUAN, Z.H., ZHANG, M. & TANG, J. (2004): Thin layer hot-air drying of bighead carp. Fisheries Sci., 23, 2932.

  • DULLER, G.A.T., PENKMAN, K.E.H. & WINTLE, A.G. (2009): Assessing the potential for using biogenic calcites as dosimeters for luminescence dating. Radiat. Meas., 44, 429433.

    • Search Google Scholar
    • Export Citation
  • EUROPEAN STANDARD (2001): Foodstuffs — Detection of irradiated food from which silicate minerals can be isolated, method by thermoluminescence. No. EN 1788, European Committee for Standardization, Brussels, Belgium.

    • Search Google Scholar
    • Export Citation
  • EUROPEAN COMMISSION (1999): Directive 1999/2/EC of the European Parliament and of the Council of 22 February 1999 on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation. Official Journal of the European Communities, Series L, 66, 1624.

    • Search Google Scholar
    • Export Citation
  • FARKAS, J. & MOHÁCSI-FARKAS, CS. (2011): History and future of food irradiation. Trends Food Sci. Tech., 22, 121126.

  • IAEA (2000): Irradiation of fish, shellfish and frog-legs — a compilation of technical data for its authorization and control. IAEA-TECDOC-1158. Vienna, Austria.

    • Search Google Scholar
    • Export Citation
  • KIM, B.K., AHN, J.J., SHAHBAZ, H.M., KIM, C.T. & KWON, J.H. (2014): Effect of drying treatment on physical identification characteristics of irradiated seasonings. Food Anal. Method., 7, 268275.

    • Search Google Scholar
    • Export Citation
  • KITAI, S. & FURUTA, M. (2009): Change in thermoluminescence of irradiated paprika powder during storage under various temperature and humidity conditions. Radiat. Phys. Chem., 78, 703705.

    • Search Google Scholar
    • Export Citation
  • KWON, J.H. & BYUN, M.W. (1995): Gamma irradiation combined with improved packaging for preserving and improving the quality of dried fish. Radiat. Phys. Chem., 46, 725729.

    • Search Google Scholar
    • Export Citation
  • KWON, J.H., AHN, J.J., AKRAM, K., SON, I.J. & LEE, S.O. (2013): Characterization of radiation-induced luminescence properties and free radicals for the identification of different gamma-irradiated teas. Anal. Bioanal. Chem., 405, 42254234.

    • Search Google Scholar
    • Export Citation
  • KYUNG, H.K., AHN, J.J., AKRAM, K. & KWON, J.H. (2012): Thermoluminescence analysis of irradiated dried sea foods using different methods of mineral separation. Radiat. Phys. Chem., 81, 12241226.

    • Search Google Scholar
    • Export Citation
  • MFDS (2010): Food Code: The Ministry of Food & Drug Safety. Seoul, Korea. p. 2-1-9

  • PREUSSER, F., CHITHAMBO, M.L., GÖTTE, T., MARTINI, M., RAMSEYER, K., SENDEZERA, E.J., SUSINO, G.J. & WINTLE, A.G. (2009): Quartz as a natural luminescence dosimeter. Earth-Sci. Rev., 97, 184214.

    • Search Google Scholar
    • Export Citation
  • SANDERSON, D.C.W., SLATER, W.C. & CAIRNS, K.J. (1989): Thermoluminescence of foods: Origins and implication for detection irradiation. Radiat. Phys. Chem., 34, 915924.

    • Search Google Scholar
    • Export Citation
  • SANDERSON, D.C.W., CARMICHAEL, L.A., SPENCER, J.Q. & NAYLOR, J. (1996): Luminescence detection of shellfish. -in: MCMURRAY, C.H. (Ed.), Detection methods for irradiated foods. Royal Society of Chemistry, Cambridge, UK, pp. 124148.

    • Search Google Scholar
    • Export Citation
  • SCHREIBER, G.A., HOFFMANN, A., HELLE, N. & BÖGL, K.W. (1994): Methods for routine control of irradiated food: determination of the irradiation status of shellfish by thermoluminescence analysis. Radiat. Phys. Chem., 43, 533544.

    • Search Google Scholar
    • Export Citation
  • SEKIGUCHI, M., NAKAGAWA, S. & YUNOKI, S. (2009): Detection of irradiation history of seasoning mixes composed of dried fish and its extract — TL analysis and application considerations for mineral separation from foods. Bulletin TIRI, 4 2427.

    • Search Google Scholar
    • Export Citation
  • SHAHBAZ H.M. , AHN, J.J., AKRAM, K. & KWON, J.H. (2013): Screening methods for the identification of irradiated foods. Current Res. Agri. Life Sci., 31, 110.

    • Search Google Scholar
    • Export Citation
  • USDA/AGRICULTURAL RESEARCH SERVICE (2011): New freeze-dry method good for processing fish. Sci. Daily, 59, 16. Available at http://www.sciencedaily.com/releases/2011/08/110801120345.htm (last accessed 28 April 2014)

    • Search Google Scholar
    • Export Citation
  • VENUGOPAL, V., DOKE, S.N. & THOMAS, P. (1999): Radiation processing to improve the quality of fishery products. Crit. Rev. Food Sci. Nutr., 39, 391440.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 7 0 0
May 2021 3 0 0
Jun 2021 1 0 0
Jul 2021 5 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0